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SUMMARY

A well-known method of generating stream functionsg of an
incompreesible fluld flow 18 that of taklng the imaginary
part of an analytic function of & complex variable. In pre-
vious publications of the author this method was generalized
to the case of subsonic flows of a compressible fluid. TFlow
patterns, which until the present, have proved 1lmpossidble to
obtain by existing methods, were, however, obtained by this
procedure; for example, flows around an obstacle the boundary
of which 18 a closed curve,® as well as around nonsymmetric
profiles. The procedure can be extended to the case of par-
tlally supersonic flows. As this method for obtaining flow .
patterns of compressible fluid from analytic functions of a,,
compressible fluid requires rather lengthy computetions, the
present paper is devoted to a detalled discussion of perform-
ing these computations. The operations are divided into two
groups: namely, those which need only be carried out oncéd &and
for all and then can be tabulated (or put on master cards) ,
and those which have to be repeated in every individual case.
A detailed description is given concerning the performance of’
necessary computations on punch card machines, This descrip-
tion 1s illustrated by an example. :

In the appendixes some theoretical guestione, which to a
certaln extent complete the results of NACA Technical Note
No. 972, are considered. For instance, in appendix II, some
questions which arise in connection with the determination of
flow patterns around a2 nonsymmetric profile and the use of
linear integral equations for constructing flow patterns are
discussed.

'The method of Von Kdrmdn and Tsien vyields & flow around
a closed curve. However, this method assumes a linear pres-
sure-~specific volume relation, 1.e., that p = A +0/p where
A and ¢ are constant instead of the actual relation
P = opk (adisbatic case).
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In appendix III those alteratione are indicated which are «
necespsary in order that the operator which has been introduced
for subsonic flows may be transformed into an operator which
generates stream functlons of supersonic flows from two func-
tions of one real variable.

INTRODUCTION

The mathematical theory of steady two-dimensional flows
of an incompressible fluid is based essentially on the fact
that a stream function of a flow of thie kind can be obtained
by taking the imaginary part of a conveniently chosen function

of one complex variable 8 = § + 1 log v, where v is the
speed (at the point) and 86 the angle which the velocity

veotor (at the point) forms with a fixed direction.?

The success of this method in dealing with problems of
the theory of an incompressible fluid, seems to suggest the
possibillity of gemeralizing this approach to the case of a
compressible fluid. An attempt, in this direction, has been
made by the author in previous publications. To this end, in- '
stead of 1log v, there is introduced A(M), a function of
the local Mach number M,? TFurther, instead of taking the
imaginary part of an ardbitrary analytiec function (i1,e., apply-
ing the operator Im(=Imaginary part of)) as in the case of
an incomrressible fluid, it is necessary to apply a general-
fization of this procedure to obtain from f(9 + LIA(M)) -the
desired stream functlon. _ ’ =

1The introduction of functions of the variable s (in-
stead of the customarily employed functioms of x + 1y, (x,¥5)
being Cartesgian coordinates in the plane) causes some A1ffi-
culties of a mathematical nature; however, in contrast to the
latter method, the former, more complicated approach (often
called the hodograph method), admits of direct generaligation
to the case of a compressidle fluld. _

®The function A(M) 4is real if M < 1, and purely im-
aginary if M > 1, Thus, 8 = 6 + 1A(M) 18 a complex vari-
able in the subsonic case and a real variable in the suver-
sonic case., Note that in the body of the text
AMM) - 10 = -1(8 + 1A (M)) 1is employed.
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One of the advantages of this approach is that 1t mani-
fests a far-reaching analogy® with the case of an incompress-
ible fluid, and is capadble of ylelding flow patterns which
have not been obtained untll the present ~ for example, flows
around a closed profile, and so forth, This approach makes
1t possible to determine a flow pattern corresponding to any
given function. In general, the actual construction of the
flow leads to a considerable amouant of computation; conse-
quently; the use of special computational devices such as the
differential analyzer, punch cards, and so forth, would seen
necessary as well as the preparation of certaln tables which
are independent of the specific flow pattern, and therefore
need be prepared only once.

The most efficient means of accomplishing this 1s not at
all evident, and it 1s necessary to analyze the needed compu-
tatlons from thie point of view., The present report has been
prepared in an effort to answer this guestion, especially as
regards punch card machines.®

This investigation, conducted at the Brown University,
was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

The author was assisted by Mr. lLeonard Greenstone, whom
he would like to thank for his valuable aild.

DESCRIPTION OF MITHOD

In the author's previous report a new approach in the two-
dimensional theory of a compressible fluid was developed.

1This anslogy often serves as an indication of the proper
method for obteining results in the theory of compressitble
fluid which ere similar to the case of an incompressible flulad.

®In the only case of a flow around a closed body which
has heretocfore been considered, Von Kdrmdn and Tsien have sas-~
sumed & linear pressure-specific volume relation, p = & + G/
A, 0 Deing constant, instead of the actual relation p
k = 1,4, which is used in papers of the author.

®The author would like to polnt out that other devices,
in particular, the differential analyzer, are alsoc of consid~

erable importance for many of the above computations. (See
refsrence 1, .
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This method of attack is a2 generaligatior of a proced-
ure ordinarily employed in the theory 6f an incompressible
fluid: namely; the generating of stream functlions of flows
from analytic functions of s complex variable.

Pcr the convenience of the reader the general idea of
this method will be descoribed in the following. The stream
function Y of an incompreesidle fluid flow is a harmonic
funection - that is;, it satisfies Laplace's equation

a3 _a |
o ¥ + §~& = 0 ) (1)
dx2 oy 8

X,y bYeing Cartesian coordinates in the plane of the flow.
Converssly, every function which satisfies egquation (1) may
bte interpreted as a stream function of a suitable flow, Thus,
if the imaginary part of an snalytic function f(z) of the
comnlex varlable z = x + 1y 418 taken, a stream function of
a passihle flow of an incompressible fluid is obtained. As
nocad before, the method of generatlng stream functions Iin
this simple form cannot be extended to the case of a compress-
itie fluid, since in the latter case the partial differential
ecvation wkich Y(x,y) satisfies is a very conplicated non-
linsar one, This situastion makes 1t necessary to use an al-
ternate method, the so-called "hodograph method," - that is,
to consider the stream function ¥ not as a function of «x,
but as a function of the velocity vector,

If vy, vz, and {(v,8) denote the Cartesian and polar
coordinates, respectively, of the valocity vector v that

is, if Vo= vy + ilvy = vel® anda if the stream function W

ig considered as a function of (v,,vy) or of (log v,8), then
¥ 1s in each case a harmonic function of the given variables.
That is, if WY(x,y) 1is transformed by means of the.substitu-
tion T

x = x{vy,vy), 3z ) _
X,y ’ P
y = ylvy,vy), 3lvy,va) 70 : (2e)

YIn order to make possible this generalization, it is,
however, necessary to consider the stream function in the so-
called "hodograph" plane (t.e., in the plane the Cartesian
coordinates of which are the components of the velocity vec~
tor) instead of considering it in the "physical! plane (i.e.,
in the plane of the flow).
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or
x = x(log v,8), 3lx,y)
vy = y(log v,08), 3((1og v),8

) $ 0 (2v)

then the funetlons 1 obtained by the transformation (2a),
(2b) satisfy the equation -

2 a
9" + 3 W = 0 (3a)
8713 avaz
in the firet case and
2 2 )
CHUAN- I I Y

3{log v)® 3g®

in the second case. (Note that these 's are different
functions of their respective arguments, although the nota-
tion does not indicate this.)

By writing
V a Infelv, - ivg)] (4a)
or

V = In[h(log v - 18)] (4v)

i1f g and h are arbitrary functions of the complex vari-
able v, - ivy, =and 1log v -~ 18, respectively, then ths

stream funections of possible flows of an incompressible fluid
are obtained,.

Since the flow pattern in the physical plane is of pri-
mary interest, i1t i1s necessary in thie case, to carry out the
transition to the physical plane; that is, to determine V¥
ag a functioen of x,y.

"It is this second method which, though more complicated
than the first, has the advantage of veing capable of gener-
alization to the case of a compressible fluid flow for which
the equation of gtate, p = & + cpk, holds (A, o, k are
consteants, p the pressure, and p the density), In the
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equation of state f3r an adlabatlic process A = O, however,
this additional constant does not entail any theoretical

difficulties,

Ag hag been indicated previounsly, the stream function
of a compreasible fluid flew, considered as & function of
(x,y) ~ that is, in the physical plane ~ satisfies a nenlin-
ear partial differential eguation. If, however, Yy 1is con-
sidered in the hodograph or in the logarithmic plane (i.o
2s a functien of (v,,vy) and of (log v,8), respectively),

then Y satisfies, in each of these planes,a linear partial
differential equatlon,

In order to simplify this equation it 18 expedlent to
introduce, instead of log v, & new variable A,

h
A=k olog [l =12 - M3>1/9 <1 + h(1 - Ma)1/2>1/ :} (5)
2 1+ (1 - N2\ _ni1 - Ma)l/é B
where ' SRR ks - . L.
. =

and — L -

here k ig the ratio of specific heats of the gas (k = 1.4
for air), and a, the veloclty of sound at a stagnation

point. The equation whiech Y seatisfies then aswumes a par-
ticularly simple ferm: namely.1 i e - s

an

_iﬂ +.§iy + N éﬂ

Lo(y) =
_ R AT aea_ TN
E(..af_‘if_ + § __lk __I ()
azaz 02 dz

In the following, instead of A and g the complex
variables 2 = A . 18, 2 = A + 16 will frequently be used.
The derivatives wlth respect to 2 and 2 have the follow-
ing meaning ' NN T

2. 9 S . _1/38 2N, 2 )
z(ax i ae)' 9z z(ax -1 o8 azar <57\2 * aeB

1]
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wvhere _ ' (e + 1)K (7)
8(i - M3>3/a

In order to obtain a generaligation of the representation
(4b), the author in the previous report derived the follow-

ing result:

From,the function N (see (7)), certain other functions
H(2A), Qém (eA), »n=1,2,. . ., m=1,2,. . . were deter-

mined, and it is proved that the expression

Yyir, 8) = Im{H(ZA) [g(z>

[=-]

z ¢ _ | .
+ 1lim }Z L%%l? Qén) (2%—2@)J/i ..J/q a g(gn)dgn. . .agé]}.(s)i
n .
0 0 . :

~>C0 -
m yr{ 2 H

(where g(Z) "is an arbitrary analytic function a«, an ardbi-
traety non-negative constant) is a solution of (6). Thus,
from an arbitrery analytie function it is possible to derive
a function VY[A(v),8], which represents the stream function
of a possible (subsonic) flow of a compressible fluid.2 TFor-
nula (8) can also be written in another form which is suit-
able for certain purposes: namely, '

1It has been provsed, subsequently, that 1t 1s possidbls -
to interchange the gummation and the passage to the limit in
equation (8) to obtain

o Z - %_1 '
VN, 8) = Im {H(zk) [g(Z) + z (_i%)_"_Q(n)(zx)/? . f g(gn)a.gn. . .d_f,l]} (Ca)
o (S

2 n!
n=1

However, as it 1s desired to make no reference to unpublished
results, all the computations in thie report are presented in
such fashion that the use of (8) instead of (8a) entails no
addlitlonal computation; equation (8) 1s almost always employed

throughout the following.

2Formula (8) can be considered as a direct generaliza-
tion of (4b), since by choosing H = 1, an) = 0, for all

n and m, and 2 = log v ~ 18, (8) bvecomes (4Db).
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+1 -
o : 2
w(x,8) xm{ﬁ(zm [ e (22 =80y __av :
2 JI - %2
-1
+1
oo 2
+ lim/ BN, 6) £ <Z(1 - & )> dt ]} (9)
i A 2 J1 - %3 i
LN . m . . —_
Bp(A,t) = 1 & Y 22 ofn) (2n - 2q) .
-
n=1 : '
where f£(2) 1s again an arbitrary analytic function of z.t
It should be emphasized that the functions H(2A),
Q;n>(2A) are independent of the function g, and hence once
computed (for a given'value of k) may bve employed in all
other stream computations without change., '
_ Once 'W(R,e)f(Eo?respbﬂding'to a given function g) has
been computed, the transition to the physical plane - that is,
the determination of the corresponding flow pattern in the
physical plane =~ ‘does not ihvolve any thedretical difficulty, v

Two problems immedibtely aribe in connectlion with this
method of attack. . N A . o

I. How to determine function g, 4n (8), 8o as to ob-
tain, in the physical.plane, a flow arcund a given obstacle
or in a channel whose, boundary Gurvgs axe.given. . . .. . L

e e R e T S O SIS S —— .
. *Punction £(2) 4 connected with: g(Z)" by the follow- :
ing relation: T ST e

IR R LI L e Lt o

/3 's ' T B
£(2) =_§d/ﬁ 2 sin 9 25522 gin ﬂ)idﬁ;+ g(O)f_
i a(2 ein® 9). - m

- -
o = . Simw - =
. - . PR LT 1
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II. Agsume that g(2) is known,® to develop & procedure
which would permit the determination of the correspoéndling
flow pattern in the physical plane with the minimum of compu-
tation. Naturally, the flow patterns in which the aerodynam-
icist 18 primarily interested are partially supersonic ones.
Since the subsonlc case serves as & basis for further devel-
opmente, as outlined in reference 3,2 the author will limit
himself in the present report primarily to this case.®

Llthough problem II doee not entail any theoretical dif-
ficulty, i1t does involve a very conslderable amount of numer-
ical computations for applications, as can be seen from the
example described in reference 4, section 3, a fact whlch rep-
resants & serious obstacle for the application of the method.

Since the determination of various flow patterns 19 one
of the purposes of the theory, the above-described situation
suggests two possible modifications of the proeedure for gen—
esrating flow patterns. )

1. The modification of the method so that a substantial
part of the computation is independent of the particular
choice of g; +thus these comnutatione can be carrlied out% and
tabulated once and for all. -

‘ryg may be remarked here that often a first approxima-
tion to the desired flow pattern of a compressible fluid is
obtained by substituting for g(Z) in (8) that analytic
function the imaginary part G(log v,0) = Im g(log v - 18)
of which gives the desired flow pattern in the physlcal plane
for an incompressible fluid. The corrections which are neces-
sary in obtaining a better approximation, as well as other
methods of determining . g{2), will be discussed in future re-
ports. (See also roference 2.) oo -—-

®In gec. 16 of reference 3 a procedure ls desceribed which
makes it possible to generalize this method to the case,of
partially supersonic flows.

®The author intends in a succeeding report to consider
analogous questions for the case of & mixed flow in the light
of methods described in sec. 17 of reference 3,

4The need of tabulating various functions which appear
in the theory of compressible fluids has been emphasiged by
some authors. (See, for example, Garrick and Kaplan (refer-
ence 5), where the Chaplygin solutions have been tabulated.
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2. The rearrangement of the remalning computations
(which muet be repeated in every particular case) in such a .
form that they can be carried out with a minimum amount of
labor using & punch card machine,k?

The main purpose of the presgsent report ig the develop-
ment of & method of determining -the flow patterns according

to requirements 1 and 2,

In four additional notes certain prodblems consldered in
reference 3 are developed further; these are of a more theo-
retical nature,

In appendix II, thke author shows that by employing re-
sultes obtailned from a consideration of the singularities of
the solutions of (8) and applying the theory of linear inte-
gral aquations, it 18 possible to determine a flow for a
given hodograph., In certain cases, solutions of this kind
can be considered as a first approximation to the sBolution
of boundary value problems,

In appendlix III methods are given for the construction
of purely supersonic flows, which methods employ various inte-
gral operator representations.

The ‘derivation of the complex potential for a Joukowskl .
profile is given in appendix IV, while appendix I 1s devoted
to the guestion of determining the Q&n),-and- L&F). ,

g S ' NOTATION

The following liet of notation is to serve the doublae
purpose of being both an index of symbols used in the present
report and a collectlon of some of the formulas, used in pre-
vious reports, to which reference 1s made in the text; how~
ever, no claim to completeness 1s made in this respect.

lAs has been emphasized by Kraft and Dibble, certalin -
aspects of this theory may bes successfully treated by use of
the differential analyger. (See reference 1,.)
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a, =22 o1 (22 R, we = 22 2 1 (3u, 4 Bu)
z oz 2 \ox 3y z oz 2 \0x oy

2 Y 2
o~ u. . i (Q—E + 9 u) = iAu; 2z =x+ 1y, T =x - 1y

’ 2
a = [aoa - %(k~l)v2]l/ gpeed of sound (referencs 3,equa-

tion (28))
aq speed of sgound at a stagnatlon point
a, coefficiente in the series sxpansion of T in powers of
x (formula (45))
-1
bn coefficlients 1n the series expansion of T in powers
of x (formula (46))
e base of Naperian logarithms
exp(x) = e%*

f,,f2 @arbitrary twice continuously differsntiable functions
of their arguments

g{(2) an analytic function of the complex variadble 2

e(-1)(z) - ag(z) _ dg(o)(Z)
4z a2

002y = &(2)

g{8)(2) nth iterated integral of g(Z) (formula (19))

_ 1/=
n o= <-:3D , for k> 1
k-

k constant in the esquatlion of state p = A + ka: The
ratio of specific heats at constant pressure to con-
Fta§§ volume; k = 1.4 for alr (reference 3,formula
22

a 2 ..
1(H) =<p?§)> (1-M%(H)) =<§%> (reference 3, formula (45))

- - maa o



12 ' - NAOA TN No. 1018

P pressure
Po pressure at a stagnation point

schlicht = univalent

v magnitude of the veloolty vector v; occasionally, the
reduced speed v/a,
- —
v velocity vector; that is, v = velb
- ' -
V,s¥, Oarteslan components of 'v; that is, v = v, + 1v,

(x,y) OCartesian coordinates in the physical plane

x = eax note that in reference 3, X = eak

-h\i/h
x, = (.1_-_11)/ x
l+h
A constant in the equation of state p = 4 + cpk (refer-
ence 3, formula (22))

A= %(ku)n"(Ma..l)"“/8 (formula (67))

A, coefficlents in the series expansion of T in powers of
x, (formula (45)) '

cosfficlents in the series expansion of g(2) as a

Ap,m
! function of {, of the fractional powers of
(formula (17))
+ -

Ap,m = max(Ay 4,0), Ay p = max(-Ay ;,0)

By coefficlents in the gerles expansion of A powers
of x, (formula (486))

Cn,m coefficlents in the series expansion of g(Z) as a

funetion of §, of the integral powers of
(formula (17))

Oa,m = max(0y 5,0); O » = max(~0, ;,0)

4



NACA TN No. 1018 . 13

B_,B_,B *,B_* (See appendix III, sec. 3); (reference 3,
g theorem (83).) Note that in reference 3

L+¢

B* = exp'< Nd(f+§)>iﬂ differing from
—.m

the usage here,

(k+1)M 4 2
=iy, + X (Be-1)IM* - 4(3-2k)M° + lﬂ ;
( ¢ ) 64 (1-M7)" [

(formula (42)); (reference 3, formula (71))

Fa(2\) polynomial approximation of mth degree in x; to T

G operation =a computation which, since it is independent of
the flow, can be computed and tabulated once
end for all

T+t ) 1 - 1 1/2(k-1)
= exp (- Na(F+t) = - }
U/n (1-M3)° L1+l(k-l)M2
e 2
for the subsonic case (reference 3, formula (111)); and
£+
E = exp g/— A(s)ds) for the supersonic case; (formula (68));
in this sense E 1s used only in the series expanslon
of V, as formula (8)
v
H =

L av (formula (52)); (reference 3, formula (42)); in
. v this sense H is used as an independent vari-
o ’ able.

Im imaginary part% of : - -

L. (y) = (:é_ﬂ + __ﬂ + N3 (formulas (6)); (referesnce 3,
o(V A8 3g2 oA f?rmula‘(4s)) sreERe

2(a)(an) = ia-f-}*—’— 2(2n)q(®) (2n)  (formula (22))
nl



14 NACA TN Ne, 1018

(n) (2n)! g, (n)
1% = -;f;—ﬂ(ak)qmn (2n)

N lozal Mach number; M = v/a = * v :
aoa gl %(k—l)vz 173

(formula (5)); (reference 3, formula (31))
(k+1) M4
8  (1-M®

)s/a (formula (7)); (reference 3, formula (47))

Q(l) = -4 P dA (formulas (49) and (8));(reference 3, for-
mula (107))

(o2 310

(Q(1)>a (formulas (49) and (8)); (reference 3,
formula (108))

Q(n) functions, 1ﬂdependent of the flow, which oecur in the
series expansion of ¥ (8ee formulas (49) and (8);

reference 3, formula (84).)

an) Q(n) computed employing Fp dinstead of F (See Q(l).
ete.)
(o) aa
R = B 22 (formula (23)); (reference 3, formula (1l4), f£f)
R(n) functinns, independent of the flew, which eccur in the

serles expunsion of y (formula (23)); (reference 3,
furanla (114), ff)

Rén) R(n) computed employing Fm instead of F

Re rsal part of

§ operation a computation which must be repeated for each
individual flow pattern to be computed

8 =1 -7 (formula (44)); note in reference 3, formula (161),
8 1s uged for 1 - T,

S(n) real part of g(n), that ie, g(n> = s{n) 4, yp(n)

p(n) imaginary part of g(n)

e
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Tm Polynomial approximation of the mnth degree in x3 to T

Ww*(N,0; A(O).G(O)); e. fundamental solution of formula (§),
poesessing logarithmic eingularity,

-§(°) = alo) 4 1g00), ( See also
reference 3, section 13.

X;P)(v.e) ( See formula (35).)

Yép)(v,e) (See formula (35).)

Gepi,®ap real and imaginary part§i respectively, of the -
n

coefficients of the power series expan-

sion of g(2); that 1s, g(2) = Ej (“ap+1

+ imap)Z(P) (See formula (36).)

ol = nax(a,,0), a_ = max(—qh,b)

n

B(M) = - [tan'lA/Ma-l - % tan=1 (hq/Ma—l).](formula (65))

£ =2+ log 2 (formula (16)). In the appendixes { =.A - 18.
N =-8 + B(M) (formula (64))

-
e angle which v makes with the real axis
6(0).9(1), . « . vValues of g at mesh points for a “lattice"
computation (See sec. 2.

>\=% [(1-“11{ ><l+h‘VlM ) ] (formula (5));
R A orerin®tass)

Ao A corresponding to the maximum Mach number of a flow in D,

K(o),x(l), . values of A at mesh points for a "lattice®

computation (See sec. 2.)
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¢t =g + B(M) (formula (64))

- 1/k-1
P density; p = Py [1 - k-1 va] / (reference 3, for-
2a,” - mula (25))
p  modulus of f; that is, ¢t = pe'® (formula (19) ff)
po density at a stagnation point
o constant in the equation of state: p = A + opf (refer-

ence 3, formula (22))
potential funection

o argument of f; that is, ¢{ = pel® (formula (19) f£)

W strsam function
y¥ = exp < Nd(f+§)\ W, for the subsonic case (formula
) (41)); (reference 3, formula
(69)). and
+n
Y = exp(—/n A(s)ds) v for(thg)supersonic case (formula
8
a ~2
A Laplace operator AY(x,y) = E_ﬂ + OV, (.__I_>
2 3
ox oy dedz
Z = AN~ 18
Z = AN+ 18
5 . _ o
A= /n~f7(H) A that 1s, & .. /3(H (reference 3, formula
, - d4H (48)); (see sec. 5.)
A, = 34
E " 3E

X<n) (See formula (33) ff;’

N (See sec. 5 of appendix III.)
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Remark: Observe that- quite frequently functions will be con-
gsldered in different planes although the potation may not, in
general, indicate this. Thus, given f£(x,y), 1let

i(xl,xz).

*= 1
y = y(x*,z?), Ty
and obtain f(x(x?,x2®), y(x,x2)) = £*(x*,x®). The super-

seript will be omitted and only f(x!,x®) . written, since the
meaning will be clear from the context. ; .

AFALYSIS ' oo
1. An Outline of the Method to be Developed in’

the Present Report

A method of determining the stream function (in the ..
physical plane) corresponding to a given function g, the
basis of which method is equation (8), was given in section
8 of reference 4, together with a numerical example. An out-
line of this method has been given.in the introduction.

. However, a goo0d deal of numerical work is entalled by -
this approach, and the amount of labor involved increases con-
siderably for a flow the maximum velocity of which is close-
to the velocity of sound. For this reason, & modification of
the method which would cut down the amount of computation is
desirable. 4 description of the proposed modification fol-
lows: ‘

" The domain, D (in the (A, §)-plane), in which the func-
tion g(Z) 1is to be considered, can be divided into two dis-
tinet parts D; and Dy, defined as the subdomalns in which

Ao < A< 0 and A< A,, respectively. (See fig., 1.) The
number A, 1s a preassigned number which can be altered to
gult the casel although, in general it will lie somewhere

'The choice of A, will depend upon the conditions in
each case; for the most part, A, must be larger than the
meximal A coordinate of the regular points of g(Z) in D.

.
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betweern A = -0.,4 and A = 0.1, corresponding to local
Mach numbers N = 0,85 and M = 0.85, respectively (M as
defined in equation (B)),

In D, the argument A varles over values which are

near gero, and, as a consequence the series (8) will converge
very slowly, necessitating taking into account a great num-
ber of terms in order to obtaln a reasonadle degree of accu-
racy. On the other hand, g of equation (8) and therefore
f 1is regular in D; and can be represented there by a

series developmenﬁ,i_~-j ) ) e T . _ .

In the domain D, the values of A are much smaller

and therefore only a smallér number of terms of equation (8)
need be taken into account. On the other hand, in Dg the

behavlior of g may be considerably more complex; for exam-
rla, g mey have singularities and be many-valued. There-
fore, 1t will be assumed that . g is given by ite numerical
values on a sufficiently fine lattice, or by a number of
series, each of which converges in some subdomain of Dj.

In D; the function g can be represented by a power

series development, and since the operator (8) is linear it
ls hence possible to prepare tables once and for all, which
will facllitate, to a very large extent, the determination

of the flow pattern (in the physical plane). This will be

explained in detall in section 4.

In order to determine the flow in the domain correspond-
ing to Dy, the procedure of section 3 of reference 4 may be

epplied, ©Since the computations are rather extensive, it is
expedient to employ mechanical devices. This reguires a cer-

tain modlfication of the above procedure, which modification

will be described in section 2. Thus, two methods for deter-
mining the flow corresponding to a given g(2) will be de-

scribed in sections 2 and 3, Both methods employ punch card
machines; in addition, the second method presupposes that the
computorr has certain tables available which are independent
of the particular flow and hence can be computed once and

for all, =~ --° = R .o L s ERER

Remark: The division of D 4into two subdomains D, and Dy

1s not necessarily to take place along the line A = Ao'
It will often be more convenient to subdivide D as

10r, 4f more convenient, by a poiynomiéi-ﬁpirbxiﬁéﬁioh;_
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indicated in figure 2, so that the tablee which have been
prepared may he used for the largest feaslble part of the
domain D.

RBemark: 1In order to emphasize the character of a computa-
tion which 1s being performed ~ that is, whether it is one . _
of that large clase which need be computed and tabulated '
only once since they are independent of the particular flow,

or whether the computation lnvolved holds good only for an
individual flow - to every description of a computation will
be added the characterization "(G operation)" or “(S opera- |
tion)! according to ite membership 1n the former or latter
class of operatione.

2. Desceription of the First Method for the Construction of
the Stream Function of a Compressible Fluld Flow by
Use of Punch Card Machines
In this section the computation of a2 subsonic compress-
itle flow by means of punch card machlines will be described.
This procedure is a modificstion of the method of section 3

of refersnce 4.1

ks indicated in that report, the procedure was divided
into three separate stages. ' T

I. Computation of the integrals

Z Zn-—l
b (n)(Z) = . .. g(2_)a%, 42, . . . 42, (10)
g n n n
Yo “o
aglo)
and the derivative S&___ 3
az
where g(O)(Z) = g{2), 2 =A- 16, is an analytic

function

II, Construction of the flow in the (A,8)-plane — that is,
evaluation of expression (8

1In ssc. 2 of reference 4, 1t was assumed that only an
ordinary computing machine was to be used in performing the
cperations described there.
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ITII., Transition from the logarithmiec plane to the phys-
i1cal planse

Step I.~ Three different methods of evaluation of

e®)(z), n=o0, 1, 2, . . . and of (ag°)(z)/az) will ve
given in the following; two of these methods employ punch
card machines; the third ueses graphical means,. . .

The firast method is to be applled 4f the real and imag-
inary parts of g(2Z) are §iven numerically on a sufficlently
dense sst of pointe (A, 8) of the lattice.

Ths second method can be used when the function g(°)(Z)
18 given analytically and can be represented in the whole regioa
concerned by several serles developments1 around conveniently
chosen points.

The third method is much less exact; it can be used in
order t¢o check the results obtained by one of the above-
described methods,.

. " Z
g{n+1)(z) =-/p g(n)(zl)dzl (11)
*, L) M 3
may be written in the form
(n,8) .
glnti)(z) = /P (s(=)an + 2(n)gp)
o (N,8)
+ 1 /ﬁ (r{®lan - 5(r)qp) (12)

where e

n) o os(n) | yp(n)

(See eguetion (20) of reference 4.) The right-hand gide of
?qugtion (12) may then be replaced by the approximating sum
13).

1Thsge series developments are not necessarily power
serles slnce g can have singularities in Dz, 1.e., branch

points, poles, etec.
20bserve that ?(n)' Vv
replaced by S(n), T n)' respectively.

(1) :

of sec., 3 of reference 4 are
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s oo .
g(n"'l)(z) = Z S(n)[ko + (k-l)A?\,Go]M\ + 1 i ‘I‘(n)[%

k=1 _ k=2

+ (k-l)Ax,eo] AN + i% T(n)['xo,eo + (k—l)Ae] A8
8 (2) . o
-1 57 A [ AorBq + (k~1)AeJ a8 (13),
k:d . : N S L
(see (21) of reference-4.) The terms AMN,AD denote the
directed distances between the meshes of the lattice (see

fig 3) ; that is, thev are positive if the integration pro-
ceeds 1in a2 positlive dlirection, otharwise negative.

As indicated above, the (approximate) integration

(n. 8) _ . . .
/ﬂ is to be carried at first from (0,0) to (A,0) along
(

o, 0)

8 =0 (or if more convenient from (0, 8) o (N, 8) along € = €,),
and then from (A,0) to (A, 8) along X = constant.

A. (A1l computations of & are (S operations).) The

s - . ‘v

53 - . L -

sums Z; 'S(O) LKO + (k—l)Ah,GOJ Ar, s =1,2,8, . . . can be

k=1 . . ) L - - - - AT =L =
computed on punch card machines by the following procedure

Every number? IS(O)[A + (k=1)A,8, ]l k=1,2, . . .,n, 1is

to be punched, say in columns 1 to 6, into a single card of
a set N,. With every entry on this card an extra column ey

(eay, col. 7) is employed in which a number, say 1, is punched
if S(O)[K + (k-1)ANB, ] is negative, and nothing is punched
if the above number is positive Then the cards are set for
progressive totaling; !S )[\o + (kLl)A%,ed]‘ will be added
if nothing is punched in the column ¢, and subtracted if 1

is punched in this column. The machine stops after each addi-
tion (or subtraction) punches tke absolute value of the pro-
gressive total, in a new card 8, £k =1,2, . . ., n, gay in

'The symbol "| |[" indicates that sign of S(°) has %o
be disregarded.
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columns 1 to 6, and in an extra column e¢5, punches 1 if
the totel is negative and nothing 4f it 1s positive, '

Now the absolute value of A A 1s punched in an extra
card M and, as before, 1 is entered in mn extra column, c,
if AN 18 negative, and nothing if it is positive., ¥Now,
in a multiplylng machine every number on the card sx 1is
multiplied with the number of ¥, In order to obtain the
right slgn, an extra c¢oclunmn, Cus is provided in the new
card, If the columns ¢z and ¢z, are both empty or both
have 1 punched, then the machine will punch nothing into the
column e¢,. If, however, in one of the columns ¢y (or ca)

the number 1 is punched and the other column, e, (or e,),
is empty, the machine will punch 1 in column o4.

The obtained results then have to be printed. In anal-
ogous manner the remaining sums are to be evaluated.

The obtained cards can then be used for evaluation of
s(2)  ang p(2), ana so forth.

Remarkg: Clearly, the approximate summation can replace the
Integration, only 1f the integrand is uniformly continuous,
Since, in general, the integrand has singularities, it is
necessary to replace the approximate summation in the nelgh-
bYorhood of these points by the exact formula., This cen be
done, for 1instance, using seriss developments around the con-
sidered singularity, (for detaile, see method B) or by other
methods.

The derivatives of first order, dg(°)/dz = dg(o)/dk,
may be obtained by replacing differentials by finite differ-
ences. (See method C,

B, A method, emvloying the example

g(z) = % [(1 - 2e2)3 4 (1 . peZ)/® 1 (14)

eonsidered in reference 4, which may be successfully applied
when g(Z) 1s given by series developments, will now be L
desoribved, : ) ' o

Remark: I'f the function g(2) 1a given in an analytic form,

tH
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then 1% is always possible toc represent 1t by finltely many
geries developments.?

In the cage of the function given by the right-hand side
of equation (14), the series given in reference 4, equation
(25) may be used in order to represent g in the domaln
D,, A < -0.691.

Another series development of equation (14) which is
more sultable for the present purposes can be obtained in
the following manner,. ’

The above function g(%Z) possssses singularities
(branch points of the second order) at the points

P

% = -log 2 + ikm, K = 0, x£1, 2, . . . (18)

only., By classical results of the theory 7f functions g(Z)”
can be expanded in series 1n powvers of ¢1?

t = %2 + log 2 _ (15)

which series will converge for |[{]| < 2m and therefore will
represent g i1n a large part of the domain, D, + Dy,

which %1s of interest.® A formal computation ylelds

e LR A (O A EE R PR
2 ; B ]
© n=o .
(—-1) = dg(o) - dg(O) . N m-a/a
g 42 dg mZ -—1 m _ L ;___.?(17)
n-1 ,
g(n) _ _l[- S—‘ An,m n+m 1/3]+ . V n m
-;:;-_- N o - m—o o T_“'_j

1A derivation of the analytic expression for the complex
potential in.the hodograph plane for a flow of an incompress-
ible fluid around a Joukowski profile is given in appendlx Iv.
By using thie formula together with classical results of the
theory of functions, the series developments for the above
case can be derived. B

®Note that in example under consideration V¥ ig deter-
mined not merely in Dz, ©but also in D, by the method de-

scribed in the present section.
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The values of 4An p and Oy p are given in tables 5 and 6,
respectively.
By wrlting

g(n) = S(n> + 1T(n), n=~1, 0, 1, 2, . . . (18)

there i1s obtained _ L

[o-] . n—1 -
S(n) = - Z‘ .A.n’mpn-*-m—i/asin [(n+mu%>cp]- y On,mpm.sin mne
(n) - - et -pta9)
+m- 32 o
pit o } An’mpn n- 3 coa[<p+m~}é>cp‘i+ : Z Cp,pP cos RO
&;0 - n:b- -t
where
t = pet®

The svaluation of the s(n)  ang p(n) o a punch card ma-
chine proceeds as follows:

The values of pk/a, k = £1, x2, =8, . . ., pl/a = 0,1,

0.2, . . ., of cos (%q;), and of sin(gcp>. k= xl, £2, ... p,

p = 0%, 30°, 60°, . , ., 330° can easily be computed (see
tebles 7 and 8) and entered on three sets of punch cards 4,
B, O, respectively (G operation). By using set A, two new
sets, D and E are then prepared (the following are all

(S operatione))., On every punch card of the set D the values
of Ag'mpn+m"1/3 and of C;’mpm for a fixed n and fixed p

are entered, say A{prn”l/a are punched in columns 1 to 6,
At pn+1/z in columns 7 to 12, A7t pn+3/2 in columns 13 %o

n,1 . n,=2
18, and so forth, Here A, p denotes Ap p 1if Aym 18
positive, and O if An,m is zero or negative; €, has an
analogous meaning. In a similar manner A;.mpn+m-1’a and of
G;.mpm are entered on the cards of set &, (Again Ay 5 = O _
if An,m > 0, and equals ‘An,m irf An,m < 0; the same holds
for GO ) By using the sets C and D,

n,n’



NACA TN No. 1018 °15]

" n—1 o
) _ = .
}Z A:’mpn+m l/8 ain.B@+m—% )q{kr 21 Cn’mpm sin mop .(20)
m=o0 m=0 s

is evaluated, and by using the sets C and E there may be
computed

L= n+m-1/3 1
% An,mp / sin[(nﬂu—g }p] +

!
S,

m=0 0 _ )
By subtracting (20) from (21) S(n) is obtained, Similarly,
pn) can be determined. By interpolation, the values of
S(n)(k,e) and T(n)(K,G) mey be determined at intermediate
points, [Note that pel® = (A - i6) + log 2, which yields
the relation between (p,®) and (A,6). Alternately, the ex-
pressions (19) may be evaluated by adlding on cards of the
sets B and € an extra column, ssy, column 7, in which
nothing 1s punched if the correspondirg aine or cosine is
positive and, say, 1 is punched if it is negative. In col-
umns 1 to 6 the gbsolute value of the sine or coslne is en-
tered. - o :

(=]

Cn wp" sin mp  (21)

i T

Analogously, on cards of the set D an additional column
is provided in which 1 or nothing is punched according to the
gign of A, 5 or cn,m' The actuel multiplication of the

two factors proceeds similarly to that of method A.

Since in the future 1%t will be necessary to have values
of s\B and T'R along lines A = consbtant, these val-

ues for various values of @ and for A = -0.02, -0.06, °°
-0.10, and so forth, were computed.l (See table 9.)

C. The method described below is essentially the same
asg that deecribed in msthod A; however, now, lnstead of punch
card methods, graphical mesans are employed.

On millimeter paper the values of S(O)(K.G) and
T(o)(A.e) at firet for some fixed values of A, say, for

A = -0.02, -0.06, and so forth, and then for some fixed val-
ues of @, are drawn. (A1l operations of C are (§ opera-
tions).) (See figs. 8 %o 15.)

‘a portion of these values had already been compubted
(much less exactly) and presented in table I% ?r reference 4,
n

vhere the symbol T, was used instead of T
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If Sk(o). Tk(ﬁ), Se(b), Te(°) are replaced by

(AS(O)/A%), (AT(G)/AA), (AS<°)/A8), (AT(O)/AG), reepectively,
approximate values for 3 and We are obtained. (See
table 10.) 4An integraph maxﬁbe uged to determine

s(V00ean, 2 o ean, /s‘°)(A.e>det/pm‘°>cx.e>ae. and
5o forth (approx.), and so obtain, using squation (12),

32y = 5G3)(n0) + 17(2)(A,8)., similarly, e(R)(2),
n=2, %, . . . can be computed,.

Sten I1.~ The second stage of the method ig then to ob-

tain the values of ths straam function and its dorivatives
in the (M,B8)-plane - that is, to evaluate the expressions?

vne) = 300Gt ey » 1 e (P ney &L L
1@ (o™ oo .

(8 an) = miany, 1(¥)(an) = Laeneen, . L, (22)

L<n)(zx) - {8n)t H(zX)Q(n)(BA)
28n!

vone) = O (e 1n g, + (20100 0) 4

+:R(n)(2A)T(n'l)(%,6> + .. . (23)

bg(n8) = 180l (anme g, + L{)an)s (O n,0) 4 L L . .
P 1™ st ey L L L (24)

Since 1t 18 assumed in this case that tﬁe,speed at
every polnt of Dp 1is considerably smaller than that of

sound, the expression (8) i1s replaced here by

v (7 0) = Inm H(2M) I}(z) N zz égﬁgé Q(n)(zx>g(n)(z)]

'n=1_
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See equations (30), (81), apd (33) 6f reference 4., Since

the L(S)(EA), s =0,1,2,. . . are independent of g, they
can be entered os master cards once and for all, for differ-
ent valuees of 8 and different values of A; that is, they
are (G operatioms). PFer instan? on mester eard No. 1 in
columns 1 to 6, the value of L o} (27) for s fixed value A,
say AOS is entered while nothing is punched in calumn 7 '

if L(% is positive; in columns 8 to 14 the absolute value
of L(l)(ek) is entered, and in celump 15 the number 1 is
pusched, 1if I‘? ig nsgative, and so forth.. Similarly, :on

master card Ne, 2 the corresponding values af Lis)(anl2))
are punched, and as forth.

The romainder of step II consiste-of (? ?peratienu)
Frem previous campusat%ogs the values(o§ ( )(A ? K = 0,
1, 2,. . . for and @ = B‘° g\l and se

" forth, fer A = k( ), 8 = 9(0), B(l); 9(2) and 'se forth.

are obtained; both sets of cards, that is, the - (e and

p(s) arr thes put 'into the multiplier, which _then. yfalda-tha
valuee o1 (22) for-the set of pgints (K(°) 6(°))

(o), glady (), glody, (a1), glady, T,

(k(z) (0)). (k S (l)) . + And Yy -and”"VYg " way-be
obtained in similar faqhion. The .values of VY, V,, Vg ob- .

tained fer 4hs eac&“under*consideration are. givnn in tables"
11 2nd 12. T

Ngwy-?he “values of ™ {A(°J, S(K)).'K'= 0,1.2,. . .,

/A (A t)) Vg (k(o “)) are plotted on graph paper-
along the- abqeisna of which the values of 8 are given. 3By
using this disgram, the-values 6f © can be determinEE—YBr'":“
which W(ale), @) =..constant, say, O * 0.1, *0.2, and se
forth., The values of ¢§C%(?>, 8) .and of WQ(A(G), 8)’

corresponding to W(k(° , 0) = constant may then be deter-
) m;ne%. This procedure is then repeested for different valueas"
° -

See table 13 and figure 13,

Step III.~ To- every value R(x), K= 0,1,2,. « ., the

‘values of G(KT) were determined fer which
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Qﬂh(n) . G(nT)) =T = constant (25)

&8s well as the corresponding values of Tﬂgk%;e) and we(A.e).
Tatles (or figures) of +v2, 1 - M2, 1 . & can ve
N o . o pv® av
brepared, which, since these quantitles are functions of A

alone, have to be computed only once, that 1s, they are (G
operations), - o .

The image pf'a atréémline (25) 1n the Phyeical plane is
glven by )

v [ a o L
. - M ] 2
x = 2(v) = . [ Po c0o8 61 ¥e(1 v )+ Py v
. pv= 6
- °, [ ] (26)
2 2 2 )
y = y(v) = _//>PO w2 0L WO o M)+ Py, av
Jy o pve Vg
(See equation (19) of reference 4.)
The 1integrals (26) will be approximated by the sums
. S=z _ _
x = x(v;) = Sﬂ ax (1)
L.
=0
(27)
y = y(v,) = Ej ay (7)), 1 =1,2,3,. , .
e m — e — - - ;::o L i—— =—-= = —--— = = = =
P z . z (s7)
Ax, = ;;9%; [WG(ST) (1 M_®) + v 2V (s7) J-EEE—E-——— bv
eVg WG(ST)
z (e1)
Py (st) 2 zy (s1)27gin @
uys xpv—:[\ye (l—MS )+VB ‘\Uv :’-— ( ) AVB (28)
sV Vg 8T
Avg = v - v - _
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The remainder of step III consists of (S operations).
By using tables for squares and the reciprocal, the values

2 2
of WQ(ST) , wv(sT) and _—%:?7 are determlned, together
WB - - S

with the previously described tables for 12, 1l - Ma, and
pv

go forth. The quantity

_Po T (s7)? 2 a, (s7)3] _8%s_
Pv e (W 8T/ (1 - s) + Vg W& 8T ] WQ(BT) (29)

is determined with the use og punch cards Bquation (29) is
then multiplied by cos e ST and sin § 8T) to yleld the
first and second terms of equations (28), respectively.

Since the cosine and sine may vary in sign, an extra _
column must be provided with each terw of the product as de~

scribed previously. The carde uite pvy 2n the muitiplier
which is set for prosgsessive toroliug, tus valuas (27)_
which corresponi to (25) taen resulting. e

3. Description of the Second Method Tor the Comnstruction of-

a Compressible Fluid Flow

As indicated in

sectlon 1, this mellcd will often be
epplied if the loecal iaz
ey
L

h number ie necely L. deor this rea-
eenslder av.o..-nf sscrlion 2, 16 1s
e sancy formeiat (8), that is,

son, in contrast to %
now necessary %o use

i

r - syee Y R
Y(A,8) = 1im wm{A,G) InaHiEh){%(Z)+lim ££$§£Q (n)g(n)(z)]

m-»oo

Im L(°)(z7\)g(z)+11m \;1 Lngn;_(zk)g(n)(Z)}
m>»c Lo -

z fn.1 N (3¢

(n)_v/' &
g = [ ... e(glag,. . . at,,
J J . .

L(°)(27\) = H(2A), Lén)(eﬁ.) = iin) H(22)Qy (n); {2)

Es Il.

. IIA method for determining the Lm(nj is given in appen-
ix I,
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Ag indicated in reference 3, sections 9 and 16 (see alsec

appendix I of the present paper). 1f AN 1s considered only
in o range A € Ao < 0, where Ag 18 & fixed negative num-

ber, then a fixed m can be determined so that equation (6)
cen be replaced by!?

1 -
Sl + Vgg) + Fp¥ = O - (e

The solutions of(Z1) are given by

(n0) = il angta) » Y p e} (s2)
N : n=1 -

In the following 1t will be assumed that A, 1s a very
small number, say A, = -0.01 (i.e., that the flows with
local Mach number = M, = 0,99 can be considered)., Then m
will be a very large but fixed number.

Remark: In order to avold confusion, all quantitises which
depend on m will have & subscript m; however, it 18 neces-
sary to bear in mind that in this section m 18 a very large
but fixed quantity, which remasins unchanged in all considera-
tions of this section. '

Ag lndicated in sectlion 1, in this method, certain tables
can be employed which are independent of the flow and which,
therefore, can be computed once and for all, and used in all
subsequent computations.

'Since N does not satisfy the hypothesis of theorem (83,
equation (6) was replaced by eguatiop (31), where Ny does

gsatisfy the conditions of the above theorem and differs only
slightly from N for values of A smaller than Ag < O,

And Ao ecan be taken as near gzero as desired.
In eppendix I a method is given for determining N, for

a given ko with any prescribed degres of acecuracy.

Note that instead of i(WAA + WBB) + Npvp = 0 in appen-
dix I, the equation. i(wik + wse) + Fyy* = 0 1 employed.

This last equation ig obtained from (31) by means of the
transformation (41).
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A, Description of Two Kinds of Tebles

1. If a sufficiently large number of the? L(n) are
computed, the functions X (2p) (v, e) + ivg (3P+1)(v 8) which

correspond to g(2) = ZP; that is,

Xm(zp)(v,e)'.,. 1)(;&213"‘1)_(;,6) = H(z?\)zp

+ Sﬂ Lén)(ZK)ZP+n (p +1). .. .(p + nl ?G operatioq) (33)

where 2 = A - 18 and M is given'by (5), may be deter-
mined.

Remarik: In the case of an incom ressible fluid where
N=log v, H(2A) =1, and L( (2A) = O, =1,2,. . . the

corfeéﬁonding functions are

xfap) = Re (log v - 10)P~ % I )-
34
(ep+1) p-1 (
R Im ('1o_g‘ v - 18)

Analogously, as evesy function of (34)°is a solution of (3),

every function Xm p =0.1,. . .. is a solution .of (31),
and since for A < A,, . N, practically equals N, every

one of these functions is & solution® of (6).

2. To every function xip)(v,e). p = 0O, l,.'.
two real functions are determined: !

b

}See appendix I,

Exactly speaking: An approximate solution of (). 1It,
however, does not differ essentially from the corresponding
exact 'solution of (8).
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{v,6) (p) A
(p) P ~(1 - M®) cos § ¥, 7
X, '(v.8) ?.f —9-{[ — =5
“(o,0 L v
sin @ ax,gp):I av [coa 5 3xiP) stm g ax,gp)“deﬂ
v dv 3V w88 L J
(v,8) ,
Y(p)(v £) = Po [-—(1 - M%) sin 8 axp)
n ! = 30
A(o’o) P M
, co8 8 a‘x&P)J av [Bin o BX&P) | cos @ axg(P)] ae}
v av P

ov v bal’}

Reomark: - Since the above integrande are complete differentials,
the values of the inte§rals are independent of the path of 1in-

tegration (G operation

Remark: In the case of an Incompressible fluid, there 1s pd-

tained for the corresponding funetions X(P), 1(p) the ex-
pregsions: ’

x(2p) (p -~ 1)°* pv(p'l) gin ((p
Y(sp) - v(p—l)

Q
Q
-]
D
ke
] !
=
Nt g
T o
N’ N

(p - 1)"% p
x2p+) (p - 1)7° pv(pal) cos ((p
(2p+2) 1 I pv(P_l) sin ((p

1
)
~
©
e’

T

I

!

-
A

D
.\./

(p

In the following it is assumed that the above-described
functions, xgp)(v,e) and xép>(v,e) Yép)(v.e) are computed
for a sufficlently large number of values of p and tabulated

for a large number of values of (v,8).

B, Determination of Flow Using the Above-Described Tabdbles

Stex I: Determination of streamlines  Vn(v,6) = conastant

in the hcdograph plane: According to the assumption of sec-
tion 1, the function g(2) can be represented in the domain

Dy, in which i1t will be considered in this section, in the
form of a Power series

>(35)
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g(2) = §i (map+1 + iasp)zp (38)
p=0

where ap are real constants. For 8 sufficiently large,

the pewer serles (38) can be replaced in D, by the pely-
nomial

s N -
E:-(“ap+1 + imzp)zp _(37)_

p=0

By substituting (37) into (30) and by observing (33),_there
is obtained for the stream function Y- corresponding to

(37) - o . ‘
(p) : . z2*P }

Vv _(v,8) = Im{ L (2N) (oo, _+ic )
" ;2; " p=o = ERE (n+1),..(§fp2>_

= Im [ }: (“2p+1+i“sp) <xé3p)+1xézp+l)>}

' g P=° ' p=3s+1

= }j (mszéap? +@ap+1xéap+1)> = §j mpxép)_ (38)

p=o - P=o°

Since, as a rule, it is necesgary to determine the values of
Xm(v,e) et many points, it is convenient to use punch cards.

Por every polnt (v,8) =a master card is prepared, and in
this, in columns 1 %o 6,the value of X&O) at the consid-

ered point (v,6) 1is entered andsin general, in columns
6p+1 to 6(p+l) the value of Xép (G operations).
Since @, can be positive and negative, (38) will Dbe

represented?! by -
2s+1 . 28+l

bre = ) axP e s ) axP e (e
p=o0 L p=o0

Rach of the sums in the right-hand expresgion of (gaz_gan*bg__

easily evaluated for a lares anaber S 29icts uvelang pdnch

card machires ¢S5 oseraticnsl. Fhe curves - VYp{v,8) = constant
can then be delerminel by interpolation. -
¢ = max(e,0), o~ = max(-a,0)
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Step II.~ Trangltion to the phygisul plane,- To every
point (v,8) of the hadograph plane thare corresponds a point
(x,y) of the physical plane, which is obtained by writing

(v,8) R
x = x(v,8) ___U/n ’ Po [~ (l-Hé)cos 8 ol _sin ® awh] dv.\
( ) e v? o8 v v ,
o0 , 28+l
+ [cos @ n _ 8in 0 awm]de} = ;; apxip)(v.e)
i ov v 99 | —
(v,0) =0 5 (40)
2
y = y(v,8) =f Po {[_ (1-M)e1n 6 iy , cos 6 awm] .
(0,0) F Ve o8 v dv
’ 28+1 :
: [sin o m , S0 8 awm]del-: E; 3 Y(P)(v.e) /
ov S 96 J o P m

See reference 3, equation (136); alsv equations (35) and (38)
of this paper, .

Let Vp,(v,6) = 6 = constant be a streamline (in the
hodogravh plane). To every value of v on VYg(v,8) = c,

there cerresponds a value® of 6, say 6(v), which can be
easlly determined by interpolation or directly from the dia-

gram for the VYp(v,@).= conetant,

By interpolation (and t?e use of th ablea described _
under II) the values of Xép (v,08(v)), ¥ P/ (v, 8(v)) are de~-
termined. BSubstituting these valunes into (40) gives

the coordinates (x,y) e6f the streamline Yy = ¢ din the phys-

l1cal plane (8 operatious).

Remark: OClearly, in prder to apply this method, %t is suffi-
cient that the function g(Z) can be anpreoximated in the
domain under consideration by a polynomial

8
}j[“(S) . im(e) ] .-

2p - 3p+1 |
Pp=d

On the o%her hand, by Ruage's theorem, an ahalytiénfﬁnction
can be approximated by a polynomial in every simply covered

lOr several valuea, aay, 61, 63, e v ey en
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and simply connected domain. Because of this fact, the
method described in this section may be applied not only
when D, 1s some region which lies ineide of the circle of

convergence of (36) but for_a_much_lérge:_class of domains.

CONCLUDING REMARKS

A method of obtaining a subsonic flow pattern of a com-
pressible fluid from a given analytic function g(2) is de-
scribed in this repnrt. The amount of time and labor nesded
for this method i1s reasonably small once certaln tables have
been prepared.3 These tables are completely independent of
the flow, and consequently once prepared, the problem of de-
termining the flow pattern may be regarded as eolved, not h
only from a theoretical but from a practigal poilnt of view as
well, : :

The present method yields only subsonic flow patterns,
but by combining these with those described in section 17 of
reference 3, it will then be possible to construct mixed,
(1.e., partially supersonic) flow patterns, from a given
function g(2). R

‘The method described in this report, and refersnces 8,
2, and 3, 1s a generalization of the determination of flow o
ratterns of an incompressible fluid from the complex potential
g(t) = p(log v,6) + 1¥(log v,0){ = log v - 18, which poten-
tlal is given in the logarithmic plane. T

Assuming that the necessary auxillary tables have besen
prepared and that punch card machines, are available, the
amount of labor needed in determining the prattern of a sub-
sonlc flow corresponding to a2 given function g(2) will only
slightly exceed that needed for determining the flow pattern
of an lncompressible fluid from a given g{lug v e,ie?.

®The author would like to emphasize that the tables of
sec. 9 of reference 3, and those of the present report (the
former are only an approximation to those of appendix I) serve
merely to illustrate the procedure. The funetions are eom-_ "
puted for comparatively few values of the arguments, and hence
by ueing them it is possible to obtain only a rather inaccur
rate picture of the flow pattern. '

®Note that a similar methed can bes developed for purely
supersonic flows. See appendix III,
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A method for determining various flow patterns is, of
course, only the initial step in the study of compressible .
fluld flows, since the asrodynamicist 3is, in the main, inter-
ested in determining the influence of different factors such
as the shape of the profile, the maximum Mach number, and se
forth, on the flow pattern.

By the choice of suitable functions for g, it should
be possible to ohtain many caseg of flows which are of éon-
siderable practical interest and value 'in studving varioua
phenemena in the theory of combressible fluids.?

Remark: As has been emphasized in the 1ntroduction, it ia
frequently of considerable importance to selve the "direct!.
problem determining the flow in the physical plane around a
profile, which flow behaves i1 & prescribed fashion at in-
finity (i.e., far from the profile)., Although in many in-
stances it 1s pessible® to determine the function g(Z) so -
there is obtained a flew around a profile approximating the
given one, it seems deosirghle to have & method of eoclving.the
"direct® problem, and to determine when solutions to this
"direct" prodlem do or 4o not exist, The author hopes to re-
turn to thig gquestion in a future report,

Brown University, _ . . :
Prpvidence, R, I,, September 6, 1945, T

As has been indicated previously, the sxamples odtained.
which correspond to the Chaplygin solutions cannot, in -
general, yield the entire flow pattern (in .the physical plane)
around a closed profile. An exception to this has been the
work of Kérmén-Tsien (references 6, 7 ) but in order %o ac-
complish trig they have substituted for the true adlabatic
pressure - specific volume relation, a linear approximation _ .
to 1t. - S e e - T s T e T S

Vil .'I‘

0nce = sufficiently large'numﬁer of flows corresponding
to various functions g have beon "catalogued,"
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APPRNDIX I

n)
THE DETERMINATION OF THE Qin) AND Li

The operator (8) (see also secs. 9 50 11 of reference 3)
was obtained in the following uwanner: As wes proved 1in refer-
ence 3, the function VY(A,8) satisfies equation (6) where ,XN-
1s given by (7); A and ¥ are connected by relatlion (5).-:
Bvery solution VY of (6) can be written in the form

¥ o= H(aM)y (41)

where H is given by (reference 3, (111)) a2nd Y* satisfies
the equation :

1 aa“[* I az ‘ *
PEANFYCIM-TY A F(z2M¥ = o (43)
P(an) = - 1 [5(1 %) 1k . 2(3k - 7)

(1 - )3 (1 - ¥?)3 1~ M

+alk + 2) - (3K - 19(1 - Maﬂ<4s)

In order to determine F(Z\) "1t 1s Wecessary to compute "N *
as a function of A from (5) and 'then substitute into (43).
The obtained function becomes infinite for A = 0 (i.e.,
for M = 1), which causes certain difficulties. On the other
hand, since only the aubsonic case iz considered hers, and
gince a small modification of the function F(ZA) practi-
cally does not change (in the subsonic region) the sclution &f
the egquation!, it is expedient to approximate F(2»), in the
range - = A< A,, Al sufficiently srall, by a fuaction
which remains finlte at AN = 0, fcr inctance,by a polynnzial’
Fn of theEmE?g degrese in ezk. As was prJved in ref:rence 3,
T = (1 - M) cen be dsveloped in a series in e3" ramely,
1By using the theory 0% integral equations, 1t ie rossli~
ble to prove the follswing theor'em. TLet B be a givan o
bounded domain in whith ' A S Ny, Ao < 00 #nd 4n which Ty

differs froda F by a étfficie&cly sﬁlll'amount. To svery
solution of (N, B) .of 1/44y + Fplrm = O a solution
VA, 6)  of 1/40* + FY* = 0 can be so -debtetmined that

Ju* (A, 6). - Wﬁ(A,B)! 22%(%,6);3, and E is & giver small posi-
tive number. . o -
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S=l-T=x, + i(ak F x4+ . (44)
k+1 -
e + 12 - (- 1YAV/ ET N
X, =2 ( ) o8

Nior YR 4 (e - 1Y _

This series converges for =-oo< A< O, Substituting k = l.4
into (44) yields

(o)
n n
T = }; Az, o= 2; a,x (45) -
n=0 n=o
and @ © ) _ _f —:
-1 n n
T = }Z Byx, = E; b, x (46)
n=0 . n=o —
x, = 0.239 o2
x = @22

The values of A,, a,, By, b, are given in table 1,

Since (465) and (46) converge for -e < A < 0; for =—m< A <Ag» -
where Me < 0 1s a fixed quantity, it is possible to approx-
imate (45) and (46) by polynomials

i
Tm = Z aneaxn (47)
n=1 )
and m
(Thl)m = Z‘ bnesn)\ (48)
n=1

By substituting these polynemials into (43) instead of - ;3)3

and (1 - Ma)ﬁ, regpectively, peolynomials of approximation,

Fn(2\) 1in 628N, are obtained. Clearly, if a glven degres
of accuracy 18 required, m will increase as Ao apprcaches

0. By pletting T, 1/T, T, and (1/T), for a given m and
comparling the corregponding values, the upper bound Ao of
the valuos of A for which |Fp(2A) - F(2A)| 1s sufficiently
small, may bq determined,
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TABLE 1

n ~&n —&n Bn bn

0 -1 -1 1

1 1 .2392 1 .2392
2 1.9 .1087 2.9 .1659
3 4,81 .0658 g.61 L1315
4 13,939 .0456 33 .869 .1108
5 43,68 .0342 123.696 .0968
6 144.02 .0370 462,39 .0865
7 492.11 .0220 .07886
8 .G188% 0724
9 .0158 .0672
10 .0138 .0629

For instance, in the

case under coaslderation where

n = the values of T and Ty &are given in table 2 and
plotted in figurg 1l6. As can bs seen from figure 16,
A< Ao =-0.11 ({i.e., M = 0,75), PF,,.(27N) 4is practically

equal to F(2A). If a good approximation is desired for
bigger values of A, mere coefficients® anp, bp must be com-

puted. In order to check the obtained values of ap, as
function of n, see figure 17,

The coefflcients Qin)(zk) of the operators which yleld

solutions of the esquation wzg + Fo¥ =.U can be obtained in

the same way as derived in reference 3, from which reference
the results are obtained

It may be remarked that other methods of obtaining ap-
proximating polynomials for F exist. These will not be
investigated in the present report, despite the fact that
they merit consider=able attention.
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The values of T, M, and Tig

Table 3

NACA TN No. 1018.

22 .0 1 11-1*2 = M
0.0160 043644 0.300 0.954
0.0195 0.44,208 04320 0.947
0.0230 0.44758 0.336 0.942
0.,0265 0.45300 0.350 0.937
0.03C0 0.45835 0.365 0.931
0.0335 0.46360 0.380 0.925
0.0370 0.46877 0.390 0.921
0.0405 0.47385 0.401 0.916
0.0440 0.47885 0.412 0.911
0.0475 0.48377 0.421 0.907
0,0510 0.48861 0.430 0.903
0.0545 0.49338 0.439 0.898
0.0580 0.49807 0.448 0.894
0.0615 0.50268 0.455 0.890
0.0650 0.50723 04463 0.886
0.0685 0.51170 0.470 0.883
0.0720 0.51610 0.477 0,879
0.0755 0,52033 0.484 0.875
0.0790 - 0452471 0.491 0.871
0.0825 0.52892 0,497 0.868
0.0860 0.53306 0.502 0.865
0.089% 0.53714 0.507 0.862
0.0930 0.49225 0.512 0.859
0.0965" 0.49790 0.520 0.854
0.1000 0.54902 0.525 0.851
0.103% 0.55287 0.530 0.848
0.1070 0.53639 0.535 0.845
0.110% 0.56040 0.540 0.842
0.117% 0.56771 0.550 0.835
0.121C 0.57129 0.554 0.832
0.1245 0.57481 0.559 0.829
0.128C 0.57829 0.563 0.826
0.1315 0.58172 0.567 0.823
0,1350 0.58511 0.571 0.821
0.1385 0.58844 0.575 0.818
0.1420 0.59173 0.579 0.815
0.1455 0.59498 0.583 0.812
0,1490 0.59818 0,587 0.810
0.1525 0.60134 0.591 0.806
0.1560 0.60446 0.594 0,804
0.1595 0.60754 0.598 0.801
0.1630 0.61054 0.601 0.799
0.1665 0.,61357 0.604 0.797
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A w
(1)
Qm = .4 Fm ar
Yo
(=) 4 1 (1)% (49)
Qm ==z Fp + B Qn $
(s) (2) » (2P
3) . _ 4 3 4 LR ] F 2 oan + L 't
% 15 an =t 1p Tnle 15f - * %0 on
—00 »,

APPENDIX II

THE EQUATION (IN THE CANONICAL FORM) FOR TEER POTENTIAL FULCTION
AN APPLICATION OF INTE2GRAL EQUATIOKS TO THE

THEEORY OF COMPRESSIBLB FLUIDS

1. In section 6 of reference 8 and section 7 ef refer--
ence 3 the equation (in canonical form?) for the stream func-
tion has been derived. See equation (6.6) of reference 8 or
(48) of reference 3,

There are instances, however, where it 1s more conven-
lent to operate with the potential function ® rather than
with the stream funetion .

In this section the canonical form of the equétion for
¢ will be derived.

. !By introducing suitable new variables £ = t(x,y),
N =Ti(x,y), every equation IL(V) = BV e + BWU , + oWy + abg
+ eV, + gV = 0 of elliptic type can be reduced to the form
ng + wnn + AWE + BWn + 0V = 0, so-called "canonical form of
equation L." (See reference 9.)

In the case considered in the present section =x = H,
y =6, and E =7, T = p.
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Functions ¢ and satlsfy the system of equations

(3d¢/36) = (3y/aH), L(H) (3y/d8) = -(3d/3H) (50)

[dquation (6.21) of reference 8 and equation (30) of refer-
ence 3]

where
(aE(v)/av) = p/v, 1(H) = (1 - M®)/p? (51)

[equations (6.1), (8.18) of reference &; oquations (43),
(43) of reference 37,

If, now, the new variable ')\, given by

%

(an/aH) = (1 - ¥°)%/p, that 1s, (aNav) = (1 - M)

i/v (52)

[équation (6,4) of reference B and equation (48) of reference
3], is introduced (50) becomes

o = pTHL - Wby, o1 . wby, - o, (53)

Differentiating the first equation (53) with respect to @ .
and the second with respect to A yiclds

bgg = P (1 - us)*wAB (54) .
p~ (1 - Mg)%wke + [d(p—l(l - Ma)%)/dk‘¢g = ~Pp)\
Replacing the first term of the second equation of (54) by
bge and Vg by -p(1l - Ma)_%¢x {(see (SSﬁ'.'yields N
Pag + Oan - p(1 - MB)-i[d(p—l(l -~ Ma)%)/th¢A = 0 (55)
Now, by the second relation of (52)

p(1 - u3)~% [d(p"‘<1 - Ma)%)/ah]

= p(1 - Ma)“(v/p)fd(p"(l - M“)é)/dv] = 4N ’
4 - -
- L DU yey-ste (56) :

2
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[equation (6.5) and errata of reference 8, or equation (47)
of reference 3], Thus, the equatioan for ¢ becomes

4 [égz - N($g + ¢§ﬂ If_o..j-(57)

i

Py + d’ee ~ 4N¢,

9

xv)

. 2. A caee in which it 1s more- advantageous to’ consider
¢ .rather than V¥ is the following: ) ; .
e In section 7 of reference 8 and in section 13 of refer—
ence 3 singularities of functions satisfying equation (8)
.were congidered. As wss indicated there, o _flow with. a
"vortex-like®? singularity at , 8°) .18 obtained if for
~the stream function, the so—called fundamental solution

WX, é. Alo) glady . S P
- 40T (o), 1‘(0)) log 1t - t°1 + B(L,T; tlo), t'(°>> (58)

[equation (7. l) of reference 8; equation (119) of reference 3]

- - —

§=A"'1el -53)\"'16 . Tt REEIECI

is taken. o L _ e oD oo

As was explained in sestion 14 of reference 3, it is Im-
portant (in connection with the transition to the physical o
plane) to have (working in the A 8—plane) singularities the
derivatives of which with respect to A “and. to 19 ‘are :
eingle—valued functions of A and’ O, S =

The point . §(°) correspondsg to the pdint zﬂ=_m“ of the.
physical plane, and if for the potential function. ¢, a - .-
fundamental solution’ ST

a8, T §(°) ¢ (oY, log 1€ - .':9[ + BE(E, f §(°) I‘.Z—Y) (59)

of (57) is taken, a flow with a “source-like“ singularity 1g
obtained. (Expression(59) and, therefore, its derivatives are
eingle valued functions of A kaﬁd 6.) -

R ¢ oL . I poams

. The names "vortex-liks!" 4nd "source-like" are used beée-
cause in the case of an incompressible .fluid (and ‘in the phys-
ical plane), in. the case of g .vortex the strean function is
given by m log Iz~ z°[, 'and in the case of a source the po-
tential function 1s given by &= m log lz - 2%, m ‘being a
real constant. (See reference 10, pp. 19f =nd 320.)
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A eingle-valued soluz ?n of (57), which is infinite of
the first order at may be obtained by taking the’

derivative with respect to 8 of (59).

3. A prodblem of considerable interest ig that of deter-
mining & flow of a compressible fluid around a given profile,
or at least around a profile the shape of whlich approximates
the given profile. BSince, in many instances, by reasoning
from the incompressible cagse, the approximate image in the
hodogreph or (A,e)—plane 18 known!, it is possible to con-
eider, lnestead of the above problem, the question of deter-
mining a flow for a glven hodograph, and the behavior at the
point of the hodograph corresponding t0 2 = o 2 is prescribed.
Clearly, instead of the image in the hodograph plane the image
in the (A,8)-plane may be used, If the results of section 7
¢f reference 8, section 13 of reference 3, and those of sec-
tion 2 of this appendlx are employed, it 1s posslidble to deter-
mine & function Y,(A,8) satisfying (6), which possesses
the required behavior at » = «, Naturally, V¥;(A,8) for

the point® (A_,8,) must have a singularity which satisfies

the condltions indicated in section 14 of reference 3, in or-
der that the flow in the physlical plane will be a flow around
a closed curve. (See, in particular, equation (148) of refer-
ence 3.) Function V;(A,08) 48 as yet, not the required
stream function, since it does not assume constant values on
the boundary of the domain. In order to determine this func-
tion, 1t is necessary to find a solution Wa(% 6) of (6)

which 1s regular in the domain H,, and whlch assumes,
on the boundary h, - of H;, the values

‘The image in the logarithmic plane of an 1ncompresaible
fluid flow around a profile P 1s often used as a first ap-
proximation of the image in the AB-plane ' of the flow of a
compressible fluid around a profile similar to P, See figs.
4, 5, and 6, where the boundaries (and some etreamlines) of a
flow around a Joukowskl profile in the physical, hodograph
and (pseudo-) logarithmic plane, respectively, are given.

®The coordinate g refers to the physical plane.
®°Ths point (A.,8,) corresponds to the point gz = o of
the physical plane. ‘ . .

Since the domain Hy; extends to infinity and, in gen-
eral, is multiply covered, it is necegsary to alter somewhat
the method of attack to be described, by mapping H; conform-
ally on a finite and Schlicht domain.

For the sake of brevity this atep will be omitted in the
following.
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Wz(khseh).= —Wl(kh’eh) (60)

(An,6n) being an arbitrary point of h,.

Function WVg(A,8) can be determined using the theory of

integral squations.

Indeed, let VY (A,

(See footnote 8, p. 281 of reference 2.)
8) be that harmonic function which assumes

the prescribed values on h;, then

satisfies the equation

(61)

: B
Aw4 + 4N

and vanishes on the boundary h,.

By employing

classical results VY, can be odbtained as

the solution of the integral equation:

¢4(¢,9)

Vs

where G = G(A,8;

3 (4NG)
Bnééfiaxl WQ(KI,Gl)dkludel + v
-zn‘467ln =2 G aAr, 48,

Ay,83) 1is Breen‘'s function (of Lap1ace 8

equation) with respect to the domain H,. -
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APPENDIX III

A METHOD FOR DETERMINATION OF STREAM FUNCTIONS OF

PURELY SUPERSONIC PLOWS

1. As indicated in reference 8, section 10 snd reference
3, section 16, the approach developed in these papers makes
1t possible to construct mixed (i.e,, partially subsonicé and
partially supersonic) flows by use of the following procedure:

In pteceding papers two methods have besern described
(one gilven by Chaplyzin, the other by the author!), which
yield certaln types of particular solutions ¥,, the stream
function of a compressible fluid flow. (See sec. 8 (8.3),
(8.8), (8.22) of reference 8 and sec. 2 of reference 2.) The
y represent gtream functions of flows, which, in general,
inciude subeonic and supersonic Ffegilons.

As was polnted out in detail in reference 2, sectlon 3
and in the introduction of reference 3, the flow patterns
generated by the Wv mentioned above or a linear combinetion

of them Td4,\ly;, are of rather special character. In partic—
ular, the flow patterns with stream function ZG,Y¥,, cannot
(in general) represent an entire flow around a closed body.

Frequently, in the theory of analytic functions of & com-
plex variable in a similar situation (i.e., when one expres-
slon of & certain kind - e.g., powsr series -~ does not repre-
sent the functlion, say, £, in the entire domain B in which
the furction has to be considered), the procedure employed is
to deccmpose nB into smaller regions, say,into 3Bgx, X = 1,

y¢ 2 o, 1, Kzi BK = Bn (see fig. 7) such that it 1s possi-

=1
ble to find in every region Byg, another analytic expression,
say, fg, which reprecents f 1n thst region. Gencraliszing

YBers and Gelbart, in reference ll, ottalned the came
solutlions independently of the author. They denocte the funec-
tions Py + iwv as Z-monogenlc functions, Here Dy is
the potential funotion which correeponds to the stream func-
tion . : -
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this method of represantation of a function of & complex vari-
able, the author described in section 10 of reference 8 and

in section 17 of reference 3 a method for representing the
stream function and in & similar manner] that is, in decompos-
ing the domain B into partes By, and representing VY in

every By by another analytical expression.

In ordsr to apply this methodl a representation for a
purely supersonic fiow 1s frequently required.

A method for geherating purely supersonic flows, com-
pletely analogous to that developed for the subsonic case,
will be given in %this appendix. ) '

2. The equation

S (V) =('EP-<L)2 (1 - ¥®) g%u g_;_g -0 (83)

(equations (43) and (6.2) of references 3 and B, respectively)
gerves once more as the starting point for the following con-
siderations. o

In order to write the equation for Y 1n the "canonical
form"?, it is. necessary to introduce new variables “E.M.

§=e+5(M). l

-8 + B(M) (64)

where .

B (M) -;/ﬂp”lpo(l«'iz'-. 1)¥am - %J/-'v"a(rf - 1)?&-«3 A
= [% 'tan"l(h'(M2 - l)%) - tan~Y(M® - 1)§] & (85)

N . .
h—/-m' k>1 J

“It may be noted that purely gupersonic flow patterne can
occcur uvon considering flows in channels or around a body with
a cusp, in which case the flow has no stagnation point.

2Since in the supersonic case M > 1, equation (83) is
of hyperbolic type. By introducing suitable varigbles‘-ﬁlﬂ__
every equation of hyperbolic type can be transformed into the
so-called canonical form . win-+ AWg + Bwh + 6V =0, " ¢ "1
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Bquation (63) then becomes
Veq, + 4(¥g + V) = 0 _ (66)

where

~3/a

A = %(k + MY (MF - 1) (67)

The function (g+n5 |
y* o= HYy, H = exp [/ A(s)ds] ’(.58>

getiefies the equation

Wzﬂ -~ Fy* = 0, F = 4% + (aA/de), s =t + 17 (695

3. By use of considerations similar to those developed
in references B and 3, the followling theorems can be derived:

Theorem I.~- Suppose that Fp 1s a function which pos-
gesgses & continuous first derivative. Let Ei(g,ﬂ.t) and
ES(E,N,%) ©be solutions of

a%E 3B a%? "
1~ t® —2t _ 1 L 1 _F R = 70
( T [agan 2 ]=0 (70
and - " o %
3°m B B
(1 - ta) 2 1 7= + B8t7 [a 2 . FmE:] = 0 (71)
atat  t at atan

respectively,

Let E, and B, possess continuous second derivatives,
and let (BE;/aﬁ)/ﬂt and (BE;/an)/gt be finite for & = O,
Then : : o i .

+
v(bn>=Jf P:(Lﬂrﬂfl<%§ﬂ - 7))
1
+ E:<},n,t>f3 %ﬂ(l - t’))] (1 - ta)-%hgt (72)

where fK, K = l; 2 are two arbitrary, twlice cceutlnuonely

differentiable functions of their respective arguments, is a
solutlion of the eguation
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. ]
80 _rU =0 (73)
agon ~ ©

The proof of this theorem 1s given in refersnce 12, eecﬁipn 2.

Theorem II.~ Let Fm(B) possess derivatives of all or-
. ders in the interval By S B S By, 0< Bo < B, < w,  If a

constant ¢ exists such that the inequalifies

K . r ..

a~F

l ml s °(§ ha 2), K=0,1,2,. « .o Bo <8 <8, (7¢)
dBK 5;4‘ <

obtain, then there exist solutions El(ﬁ,ﬂ,t) and Ea(i,ﬂ.t)

of (70) and (71), respectively, satisfying the conditione of
theorem I.

*®
By substituting the functions Eyx, K = 1,2 1into (72)

for the By, there is obtained a representation for solutions
of equation

Uy - Tavt =0 (75)

4., There exlst various other integral representations of
solutions of (69) in terms of two arbitrary functions of one
variable. One such representation, differing from that given
in the preceding section, will be discussed here.

Let R(E,N;t*,N*) denote the Riemann functions of equa-
tions (69). (see reference S., P. 22) -~ that is, & funchion
of the four real variabdles ¢E,N,E",NM%, which satisfies equa-

tion (69) for every fixed (£*,7*), and which further has the
propertles that.

Ret, %5ttty =1 |
) _ : : © (76)
R(E",m;e7,n") = 1
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This function (for (69)) may be represented in the form

R(E, n g* %y = ‘/P MZ“ P(E,,M, )2k, an,
g*
J/w u/ F(E,,M,) “4: P(t,,M5)aE, an, at; ang - . . L (77)
E* b '

(See reference 8, sec. 7.)

(0ym)

,//////// >t

(¢,0) (0,0)

(gsﬂ>

The clagsical theory of partial differential eguations of
hyperbolic type yields the following results:

be any two arbitrary differentiable
and 1f u satisfies the dif-

then

Let fyx(K = 1, 2)
functions of one real variabls,
ferential equations ugy + Fu = 0,

4

u(t,N) = u(0,0)&(£,0;0,0) f//’ate;n;t*,o>f1<e*>ag*

I A 'ﬂ |
+J/n R(E,n;0,M%) g, (M¥)anx  (78)
J, , .
the Riemann function associated with the

(R is, o5f course,
differential equations satisfied by wu.)

Remark: A representation of the form (78) is a's~ «nlii for
the subsonic region.
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Indeed, suppose that £ 1is replaced dy ¢ = AN - 4¢, T Dby

T=x+16, ¢t* by ¢*, T* vy T*, in (77), thie trans-

formed expression will not differ essentially from the func-
tton x({,T) introduced in (7.4) of reference 8.

If the complex variable ¢{,[ instead of A,H, is used, the
equation for the fumetion ¥, in the subsonic cese, assudes’
the form L '

uﬁff+ F\* = 0
(equation (86) of reference 3)

a new representation for Y* 4in terms of two arbitrary ana-
lytiec functions h;, hy of ¢one complax varlable may then be

obtained:
LT = ¥t (0, 0)R(E.T10,0) + /p RETT L oy (tat”

: J/“ (¢, 550, Tm, (T4 (79)
A . _ :
(r is*t?e Riemann function of the differential equatlion

for . - L

5. It is of considerable inbterest to show that both (8) and
(72) are different forms of the same opsrator, the former ob-
taining in the same subsonic case while the latter holds in
the supersonic case. In order to derive this conclusion, it
1s necessary to develop further the method of attack initiated
In sections 6 and 8 of reference 3. The following result is
a slight generalization of thecrem (53) of reference 3.

Let E; %be a solution of

%

(2) (1 - &%) 1 OE, 3B | AggE,
A, 6 —_—e AR =

¢ 8= Ls(h + 19) B \AE 58 139 ¢ 2A g )]

t

1 ;. o 3%, 3%, L '
+——-—-——-(l - ta)g(Aﬁ et 331> =o' (80)

'Note that A ie a function of H salone and that

Aﬂ = QA Agg = ai%. Iﬁdeed, Ag® = 1(®) = poap_a(l - M%)

3 0
‘and (E) A(M). (See sec. 8 of reference 3.)
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which possesses the property that

L aEl + 19) A - e® + ByvA - t7 Anm (81)
Ag oH t(A + 18) 25(A + 10)
18 continuous at ¢t = 0, at A = O, and at- - B8 = 0, then

+1

v(H,0) =/ E,(H,0,t)f [ (A(E) + 18)(1 - £2) (82)
AT . 1 _ m—;

-1

where f 4s an arbitrary, twice differentiable function of
one variable will be a solution of

AHE.%Z.§’+§H1§L'+B\L/=O . (83)

The preoof of the above theorem follows step-by-step the
proof of theorem (63) of reference 3.

Denote by Bz(H,g,t) a solution of Gﬁa)(A,-G.t)

and obtain the following representation for solutions of (83)
in terme of two arbitrary, twice differentiable functione
£f,, £f5 of one variabdle.

+1r

W, 8) =f iEl(H,G,t)fl [.;_mm) L 16)(1 - tﬂ
‘—1 -
+ Bo(H,8,t)f [E(A(H) - 18)(1 - ta)] 4 (84)
2 /1 — % 2

For M < 1, A(H) = A(M) (see equation (48) of reference 3)

is real and therefore ¢ = A - 16, [ = A + 18 represent
conjugate complex variables. For M > 1, A(H) = A(%)A be-
T + 9>

comes purely imaginary and therefore g = A+ 18 = 1
=1¢f and ¢ = A~ ip = 1 (—-— ) where § and ﬂ are
the real variables 1ntroduced in (64) It remains merely to

show that (80) can be written in the form (8) for M <1 and
in the form (66) for_ M > 1, Suppose first that M <1 not-

B
- 3E
ing that I, = 9E _CH _ 2 /b (80) can be written in the

fornm 3A  Ag 28/ 3m'
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a

1 - t° 2 3E B, 2 3%z
== 5 __ A 1 EH 1
A (et e [ 2 -

+ Apg + BEl] = 0 (85)

Since

aaEl aEl azEI 2 aEl
SHE (aA AH)H = 3he Ay Mgy

equation (85) can be replaced by

T ORELA - oo\ atat | ahg®

-+
+7 \ 3t = sAg® 3t

F-] .
2/1 - 7 Mg [ 3%, Agg aEl> oA~ (831 Ayg )
1

4A5° [23%8,  App /aB. | 3E, B .
A . SO = 4 + == |+ B, =0 (886)
Ji 2 82 (agag Ag® ( sl 3¢ ahg? 1)

E+t N
or introducing B,* = B; exp J/“ N(s)ds | where ¥ = 23
- ‘. 4Ag®
EEEPN S ¢
2AHa exp( —/ﬁ N(s)ds/ . 2 aaEl* 1 aml*
—4 (1 - t7) - - - n

tLnl — £2 afo % t 3¢
2Tt [aaml* (F 2 \s. *] o' (87)
- + + 1 = 7

CICH 44g°

If F + _;fn is replaced by ¥, and divided ™y a nonvanish-
4Liy” :

ing factor, it is seen that (87) is essentially the same as
eguation (?5) of reference 3.

¥ote that t-lEj* of refarence 3 should be corrected to

N
_t'l“g aad that (86) 1s the conjugnie of squation (7 5) of

refercnce &, 1.e., tha latver may be obtained from the former
by replacing ¢ by T and T by ¢. -
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Title: "/.5 a8 a function of M"

M /3 M /3 M /6
1.00 | 0.0000 1.47 | 0.,1921 5.90 | 1.4703
1.01 | 0.0008 1.48 | 0.1974 6.00 | 1.4827
1.02 | 0.0020 1.49 | 0.2026 6.10 | 1.4944
1.03 | 0.0039 1.50 | 0.2078 6.20 | 1.5061
1.04 | 0.0061 1.60 | 0.2590 6.30 | 1,5172
1.05 | 0.0085 1.70 | 0.3108 6.40 | 1.5279
1.06 | 0.0110 1.80 | 0.3618 6.50 | 1.5388
1.07 | 0.0140 1.90 | 0.4116 6,60 | 1.5491
1.08 | 0,0169 2.00 | 0.4602 6.70 | 1,5591
1.09 | 0.0200 2.10 | 0.5076 6.80 | 1.5689
1.10 | 0.0235 2.20 | 0.5535 6.90 | 1.5785
1.11 | 0.0268 2.30 | 0,5983 7.00 | 1.5877
1.12 | 0.0304 2.40 | 0.6413 7.10 | 1.5966

0.0339 2.50 | 0.6827 7.20 | 1.6054
0.0376 2.60 | 0.7229 7.30 | 1.6143
0.0415 2.70 | 0.7613 7.40 | 1.6225
0.0455 2,80 | 0.7983 7.50 | 1.6308
0.0494 2.90 | 0.8340 7.60 | 1,6388
0.0577 3.10 | 0.9013 7.80 | 1.6542
0,0618 3.20 | 0.9329 7.90 | 1.6617
0.0563 3.30 | 0.9637 8.00 | 1.6688
0.0707 3.40 | 0.9930 8.10 | 1.,6761
0.0'754 3.50 | 1.0213 8,20 | 1.6829
0.0798 3.60 | 1.0487 8.30 | 1,6898
0.0845 3.70 | 1.0748 8.40 | 1.6964
0,0887 3.80 | 1.,1002 8.50 | 1.7028
0.0932 3.90 | 1.1243 8.60 | 1.7093
0.0981 4.00 | 1.1481 8.70 | 1.7155
0.1027 4.10 | 1.1707 8.80 | 1.7216
0.1¢75 4.20 | 1.1926 8.90 | 1.7276
0.1124 4430 | 1.2136 9.00 | 1.7335
0.1172 4.40 | 1.2339 9.10 | 1.7391
0.1220 4s50 | 1.,2537 9.20 | 1.7447
0.1268 4e60 | 1.2724 9.30 | 1.7502
0.1319 4470 | 1.2908 9.40 | 1.7557
0.1359 4.80 | 1.3088 9.50 | 1.7608
0.1417 4490 | 1.3257 9.60 | 1.7659
0.1467 5.00 | 1.3424 9.70 | 1.7710
0.1519 5.10 | 1,3585 9.80 | 1.7760
0.1567 5.20 | 1,3740 9.90 | 1.7809
0.16.9 5.30 | 1.3891 10.00 | 1.7858
0.1668 5.40 | 1.4038

0,1719 5.50 | 1.4179

0.1772 5.60 | 1.4315

0.1819 5.70 | 1.4451

0.1873 5.80 | 1.4579
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For thé case M > 1, =a ‘gimilar procedure yilelds

) e+ |
20y exP(}/ﬂ N(Sié€>l{(l RN 6331*.-'£ B _*
134801 - t2 3not t

B
= 0 (88)
4Agzi[}

which up to a constant factor coincides with (70).

BB, * H
+ 2¢t [ RN M (F -
a¢fan

APPENDIX IV

THE COMPLEX POTENTIAL IN THE HODOGRAPH PLANE FOR

A JOUKOWSKI PROFILE

1. In connection with the second method for the determi-

nation of g(n)(Z) it 18 necessary to have an analytic rep-
resentation for the complex potential (in the hodograph plane)
of an incompressible flow around various profiles.

Pnis problem will be treated in the following for a sym-
metric Joukowskl profile.

2. The function

gt = MNa + 2* + Nz*, 1> 0 (89)
maps the circle |g*| = a into the clrcle Jzt - Mal = a(1+M).
The transformastion

1l /7 + a”
= - +  — ]
Z 3 (z z+> (g90)

maps Jz©¥ - Tal = a(l + M) dinto a Joukowskl profile. There-
fore

a2

. : Na + (1 + 7)e*
maps |[z*] = a into a Joukowski profile.

g =Ta + (1 + N)zg* + (91)
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Since the complex potential around jg*} = a 1is
»
w(z*) = —V<z*ei“ + a? - 1 Jl'log Z (92)
ghell 2 a

the complex potential W(z) = w{z*(z)] is obtained by subdb-
stitutlng the function

(z - 2Na) + 8 s = =(g2 - 4a2)i (93)
2(1 + 1)

o ¥

(which 1s the inverse to (91)) into (92).

W(x) = -V [Cz - 2Ma + 8)e'®  22%(1 + M) ]
2(1 + n)_. e}q(z - 2Ma + 8) -~ o
_ Al gy 2~ 2Na + 8 (g4)
21 2(1 + M)a

Denoting by g the conjugate ﬁo the velocify vector
glves e . . - _ _ o= .

| a® it 1 + +" .
- [}VSim . ——4——] [——3—-3——] (95)
ia_,2  2m 2 L2(1 + Ma

The aim of this appendix will be to represent W asg a

function of g. By writing -

olo (z - 20a + s) + ' 2a®(1 + 1) = r,(z,8) (96)
2(1 + n) eim(z - 2Na + s)
Zz2 ~ 2Na+ s

BT+ ma = TelEs) (s7)

1t is seen that r; and r; are rational functions of -4

and .gs, where =z, 8§, and g are coannected by the relation

b
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(s + z)ei“ g 2(1 + M)a®(s + z) ir 8 + g

- — (98)
2(1 + 1)e el (5 - _

g = -V
2Ma + 8)°s 2n (g - 2Na + s)s

and

82 = g% -~ 4a® (g9)

Introducing a new variaeble +t, defined by

(t + l) a
t
8 = &a (t -

" and it is found that ry &nd T3 Dbecome rational functions
,o0f %, which will be denoted by R, and Rz. A formal com-
putation yields

R, (t) = a [(t - n)eim L (s n)___]
. (1 + 1) T m.ie

gives

Rg(t) %—ﬁ-;—

t and q are connected by a relation

" i1a 4T 1 .
- B.(8) = 0; R.(t) = (=%° [9 U u+m) | ](100)
3 ® ( ® ) 1+ (t-1))2eln 2a (t_-n)__

which is obtained by replacing in (98) s and gz by a._(t+%'->

R .are rational

and a(t—%), respectively. RI. Ra' o

functions of t; By, Rz are so-called algebraic functions of q.

The determination of simgular pointe of these .functions
as well as determination of series development of ‘B, and Ry
around these points can be achieved vging classical methods of
theory of functions. o - -

The derivation of the corresponding developments of R,
and log Rz as a function of 2 = log g does not involve
additional essential difficulties.
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Table 4 2
The values of S(o)and T(O)
(8 operation) -
8=0.0 o0,1 80,2 6=0.3 6=0.4 6=0.5
| 5@ @] @ o] g0 0| o] 0| g0 o] o] g
0 0000] 0.0000 | —0.0993| 0.0049 | -0.1950( 0.0188 | -0.2841] 0.03% | -0.3654| 0.0639 | -C. 0.0898
0.1 0,0000{-0.1058 | -0,1113{-0.0983 | -0.2165|-0.0777 | -0.3116|-0.0480 | -0.3955|-0.0139 | -0.4685| 0.0208
0.2] 0.0000{-0.2270 | -0.1297{-0.2152 | -0.2486(-0.1833 | -0.3509|-0.1396 | -0.4363|-0.0921 | -0.5075|-0.0462
0.3 0000|-0.3735 | —0.1599|-0.356L | -0.2982}-0.3005 | -0.4074|-0.2344 | -0.4943|-0.1693 | -0.5573|-0.1086
0.4| 0.0000]-0.5649 | <0.2147|-0.5240 | —0.3794|-0.4303 | -0.4895]-0.3275 | -0.5643|-0.2372 | -0,6188 |-0.1624
0.5 0.0000[-0.8524 | -0.3312}-0.7491 | ~0.5166{-0.5637 | -0.6062]-0.4069 | —0.6564|-0.2868 | —0.6911-0.2020
0.6] 0.0000{-1-4440 | —0,6377|-1.0263 | -0.7424{-0.6523 | -0.7566]-0.4445 | -0.7619|-0.3134 | ~0.7690]-0.2219 |
0,7]|-6.0916| 0.0000 | -1.3012]|-0.9458 | -1.0117|-0.5906 | —0.9102{-0.4139 | -0.8638|-0.2998 | -0.8439|-0.2196
0.8]-1.7353| 0.0000 | -1.4350(-0.3981 | ~1.1560|-0.3995 | ~1.0166|-0.3280 | -0.9449|-0.2580 | -0,9198 {-0,2015
0.9|-1.3726| 0.0000 | -1.2987|-0.,1737 | -1.1671|~0.2397 | -1.0628|-0.2345 | -0.9943|-0.2039 | -0.9517 |-0.1676
W0[-1.2247] 0.0000 | -1.2013|-0.0914 | -1.1355|-0.1456 | -1.0717|-0.1617 | -1.0186|-0.1539 | -0.9803 |-0.1349
o-0,6 0,7 £=0.8 60.9 8=1.0
5(0) T(O) S{O) p{0) (0} p(0) g(0)| {0} S(O) (0)
0 [—0.5048] 0.1150 | -0.5643 0.1383 | —0.6184] 0.1590 | -0.6723| 0.1765 | ~0.7136| 0,1910
0.1|-0.5325| 0.0536 | -0.5892| 0.0832 | -0.6399{ 0.1090 | -0.6859| 0.1308 | -0.7281 0.1,83
6.2|-0.5677]-0.0045 | ~0.6259] 0.0322 | -0.6660] 0.0629 | -0.7076| 0.0889 | -0.7457 0.1102
0.3]-0,6099|-0.0674 | -0.6565{-0,0139 | -0.6966| 0.0221 | -0.7328| 0.0517 ~0.7660 | 0.0758 -
0.4 |-0,6619|-0.1016 | -0.6985|-0.0525 | -0.7310|-C.0125 | -0.7683| 0.020L ~0.7888 | 0.0462 =
0.5 |~0.7192|-0.1347 | ~0.7444|-0.0818 | -0.7680(-0.0397 | -0.7908-0.0057 -0.8129 | 0,007 >
=
0.6l-0.791|-0.1536 | -0.7916|-0.1007 { -0.8058]-0,0587 | -0.8213)-0.0249 -0.8376 | 0.0025 =
0.7 |-0.8366(-0.1577 | -0.8371]-0.1090 | -0.8424(~0.0697 | -0.8510 -0.0377 | -0.8619 |-0.0115 =
0.8|-0.2366 |-0.1290 | —0.8777{-0.1080 | -0.8759|-0.0736 | -0.8788|-0.0449 -0.8848 1-0.0209 ;
0.9|-0.9260|-0.1323 | -0.9110{-0.1003 | ~0.9048|-0.0720 ~0.9033|-0.0474 | -0.9153 |-0.0265 g
1.0!-0.95461-0.1120 | -0.9381}-0.0887 -0.9286-0.0666 | —0.9243]|-0.046/4 ~0.9237 [-0.0287 S
(03]
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Teble B
(8 operation)
) An,m
. m
n 0 1 2 | 3 4 5
0 -0.5 0.62500 0.119797 0.024741 0.003871 | 0.004284
-1 Q.25 0.31250 0.179625510.0818525| 0.0135485] 0.01928"7
1 -1 . 0.416687 { 0.0479219 1 0.007069 {0.000860 )
2 -0 .66606 0.166687 | 0.013691 | 0.001571 |0.000156
3' ~-0.266067 0.047619 | 0.003042 [0.0002868 | 0.000024
4 ~0.078120 | 0.010582 | 0.000553 {0.000044 |0.000Q003
Table 6
(8 operation)
Cn,m
m
n 0 1 2 3 4
1 0.5708 o 0 0 0 =
2 -0.0817 +0,5708 0 0 0
3 +0,0124 -0.0817 +0.2854 8] 0
4 -~0.0016 +0.0124 -0.0408 +0.0851 0

<



(3

Table 7: The Values of p¥ (G operation) @
-3/2 -1 -1/2| o 2 )
| 7 g2 | M e | PR B | 2| g 8 |
1000.00000 | 100,00000 | 10.00000 | 1. | 0.1 |0.0L | 0,001 | 0.0001| 0.00001{ 0.000001 | 0.(6)*¥1 | 0.(7)1 |o0.(2)1
125.00000 | 25.00000 | 5.00000 1 1.1 0.2 10.04 | 0.008 | 0.0016| G.00032) 0.000004 | 0.0000L3| ©.000003|0.00000L
37.03704 | .11, 3,33333 | 1. | 0.3 |0.09| 0,027 | 0.0081| 0.00243| 0.000729 | 0.000219| 0.000066]0.000020
15.62500 |  6.25C00 | 2.50000 | 1.| 0.4 |0.16 0.064 [ 0.0256| 0,01024| 0.004096 | 0.001638| 0.000655| 0. 000262
8.00000 [ 4.00000 [ 2.00000 | 1. [ 0.5 [0.25 | 0.125 | 0.0625| 0.03125| 0.015625 | 0.007813| 0.0039060.001953
4,62963 | 2.TTT18 | 1.66667 | 1. | 0,6 |0.36 | 0,216 | 0.1296 | 0.07776 | 0.046656 | 0.027994| 0.016796|0.010078
2.91545 | 2.04082 | 1,42857 | 1. | 0.7 [0.49 | 0.343 | 0.2401{ 0.16807| 0.117649 | 0.082354| 0.057648|0.040354
1.95313 | 1.56250 | 1.25000 | 1. | 0.8 |0.64 [ 0.512 | 0.4095 | 0.32768| 0.262144 | 0.209715] 0.167772(0.134218
137174 | 1.23457 | 1.11111 [ 1. [ 0.9 |0.81 [ 0.729 | 0.6561 | 0.590491 0.531441 | ©.478297| 0.430467|0.367420
1.00000 | 1.00000 | 1.00000 | 1. | 1.0 {1.00|1.000 | 1.0000] 3.00000| 1.000000 | 1.000000| 1.000000|1.000000
0.75131 | 0.82644 | 0.90909 |1.| 1.1 [1.21 |1.331 | 1.4641 | 1.61051 | 1.771561 | 1.94B717| 2.143589|2.357948
0.57870 | 0.69444 | 0,83333 [ 1. | 1.2 |1.44 | 1.728 | 2.0736 | 2.48832| 2.985984 | 3.583181| 4.299817|5.159780
0.455L7 | 0.59172 | 0.76923 | 1. | 1.3 |1.69 |'2.197 | 2.8561 | 3.71293 | 4.826809 | 6.274852| 8.157307 [10.604499
0.36443 | 0.51020 ( 0.71429 | 1. | 1.4 [1.96 | 2.744 | 3.8416| 5.37824 | 7.529536 | 10.541350 [14.757891 [20.660047
0.29630 |  O.44444 | 0.666687 [ 1. | 1.5 [2.25 | 3.375 | 5.0625 | 7.59375 [11.390625 | 17.085938 {25.628906 [38.443359| *
95 P1.1_/2 F(’ f,13/2 f,:7 S,15/2 |
0.(9)1 0.(10)1 0.(11)1 0.{12)1 0.(13)1 0.(14)1 (%) Note: The
0.(6)1 0.(7)205 0.18)410 0.(9)819 0.(9)164 0-{10)38 mumber in pa-
0.000006 [ 0.000002 0.(6)531 0.(6)159 0.(7)478 0.(7)143 renthesee in- :
0.000105 | 0.000042 0.000017 0.G00007 0.000003 0.000001 dicates the ,
Q.000977 0.0&]1..88 0.W 0.000122 - OQMI 0.000031 mmber of zerog ;
following the )
0.006047 | 0.003628 0.002177 0.001306 0.000784 0.000470 deoimal point. N
0.028248 | 0.019773 0.013841 0.009689 0.006782 0.004748 | Thbus, 0.(7)205= Bi
0.107374 | 0.085899 0.068719 0.054976 0.043980 0.035184 .0000000205 . e
0.348678 | 0,313811 0.282430 0.254187 0.228768 0.205891 v
1.000000 | 1.000000 1, 000000 1.000000 1..000000 1..000000 . :;
2. 2,853117 3.138428 3.452271 2.797498 4177248 bl
5.5323342 7 430084 8.916100 10.699321 12.839185 15.407022 b
13.785849 | 17.922604 23.298085 | 30.287511 |  39.373764 51.185893 =3 :
28925465 | 40.495652 56.693912 79.97147 | 111.120069 | 155.568006 ool i
57 6650% | 86.498086 129.747129 | 194.620093 | 291.931040 | 437.896560 . )

l "thi: "i




Table B: The Values of cos %cp and sin %(p (G operation)

oz" gin Q/2 | cos ¥/2| sin g cos @ | 8in 3¢/2] ocos 3¢/2| -8in 2@ | - cos 2¢| sin 5¢/2)
.000 000 | 1.000 000 .0OO 00O| 1.000 000] .000 000 | 1.000 000 .000 000| 1.000 .
30°| .258 819 | .965 926 .500 000| .866 OR5] 707 107 | .707 07| .866 025! .500 gggi % 822
60°| .500 000 | .866 025 .866 025| .500 000| 1.000 000 | .000 QOO .866 025! —.500 000] .500 00O
903 S107 107 | W707 107! 1.000 000 .000 000] 707 107 | -.707 107| .000 00O | —1.000 000} -.707 107
1207 .866 025 | ,500 000| 866 OR5| ~.500 000| .0DO 000 | ~1,000 0OD|-.866 025 | —.508 000]-.B66 025
1507 .965 926 | .258 819 .500 000{ ~.866 025 ~.707 207 | -.707 107|-.866 025 .500 000| .258 819
1802 11,000 000 .000 000| L000 000 | -1.000 000{-1.000 000 .000 000| .000 000 | 1.000 000|1.000 000
210°] 965 926 | -.258 819| ~.500 000| -.866 025| ~.707 107 | .707 07| .866 025 | .500 000| .258 819
240°| .866 025 | ~-.500 000| —.866 025 ~.500 000| .00 000 [ 1.000 000( .866 025 | -.500.000|-.866 025
270°| 707 107 | -.707 107|~L.000 000 | ,000 000| 707 107 | .707 107| .000 600 | ~1.000 000|-.707 107
300° | .500 000 | -.866 025| -.866 025| 500 000| 1,000 000 | .000 000|-.866 025 | -.500 00O| .500 00O
330%| .258 819 | -.965 926| -.500 000| .B66 OR5| .707 107 | -.707 107|-.866 025 | .500 00O| .965 926
360°| .000 000 {-1.000 000] .00C 000| 1.000 000 .000 00O } -1.000 000| ,000 000 | 1.000 000| .000 00O
P| ecos 5p/2 sin 3¢| cos 3@ | ein 7F/2| coa 79¢/2 sin 4L@| cos 4@ | sin 99/2| cos 9%/2
D] 1,000 000 | .000 000| 1,000 000| 000 00O 1,000 000 | ,000 00O[1.000 000 | .00CO 0OC|1.000 000
300 .256 819 | 1.000 000 .000 000 | .965 926| —258 819 | .866 025|-.500 000 | .707 107|-.707 107
60°| -.866 025 | 000 000|~1.000 000 | -.500 000| -.866 025 | ~.866 025|-.500 000 |-1.000 000j .000 OO0
1 909 ~.707 107 | ~1.000 000| .000 000 | -.707 107| .707 107 | .00O 0OO|1.000 OO0 | .707 107} 707 107
1209 ,500 000 | ,000 000| 1,000 000 866 0257 500 000 866 025(-,500 Q00 ,000 00043000 000
1509 .965 926 | 1.000 000| .00D 000 | .258 819| —.965 926 | ~.866 025|-.500 000 | ~.707 107( .707 107
o . «1.000 000 | ~1.000 000| 00O 00O | 00D 000j1.000 000 | 1.000 000{ 00O 000
2183.3“'H -:322 332 —-1.333 833 .000 000 .258 819 8250 926 | .866 025|~.500 000 | -.707.107(-.707 107
240% - 500 000 | .000 000] 1.000 000 | .866 025) ~.500 000 | -.866 025(-.500 000 .000 000|1.000 000
27109 707 107| 1.000 000| .000 000 | 707 107 ~.707 107 | 000 00G[1.000 000 | .707 107 ~.707 107
3009 ,866 025 000 000|-1,000 000 | -.500 000| .866 025 | 866 025|~.500 000 {-1.000 ooor .000 000
; ) 28 819 | —.866 025|~.500 000 | 707 107| .707 107
3309| ~,258 819 | -1.000 000| .000 00O | .965 926 .258 Bl9 i 000
36092000 000| .000 000| 1.000 000 | .000 000 }-1.000 QOO j -000 00O 3.000 000 | .000 .00
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Table 9 (s Opera.tion) NACA TN No. 1018

Computation of the stream function (in the logarithmic plane) of a

compressible flow generated by the analytic function (2.5)

S S
Aol 9 W @] 3] | 2 45
«02 | .05 | -.0496 | .0009 [~-.0002 | .0004 | .OOOL | .0538 .0538
«2 | -.1945| .0026 | .0013 | ,0000 | .0OOl | .1862 »1908
4 | -.3627 |-,0019 | .0105 | ~,0001 |-.0001 .2653 «R723
6 | =.4970 |-.0172 | .0342 | -.0003 -.0009 «2511 «2573
8 [ -.6223 -,1035 | .1764 | .0003 |-.0034 | .2125 2006
.06 | .08 ~,0840 | .0047 | 0000 .0000 | .0000 ~0984 «0999
+30 | -.2961 | .0142 .0033 { -.0005 0001 «2792 «2835
o34 | ~ 3147 .011.2 +0058 | -,0001 .0000 | .2817 »2975
40 | -.3584 | 0094 .0091 | -.0004 [-.0001 [ .2906 .3085
070 - 5640 00054 00492 "00043 —~e 0020 02575 02541
+90 | ~.6577 | %0322 | .1083 | -.0020 | .0109 | .1927 .1832
. 10 (] 15 ~e 1621 . 0148 - 0001 . OOOO . 0000 . 2050 . 2082
«50 | =44593 | .0282 | .0194 | -.0018 |~.0003 | .3362 «3406
60 | -.5218 | .0246 .0338 | -.0030 |{~-.0008 3109 «3134
1.00 | -.7085 -.0179 | .1507 | -.0094 |-.0083 «1993 .1608
W20 | W22 | -.2672 | L0458 | -.0024 0000 <0000 | 4119 «4150
40 | -.4311 | .0706 | .0039 | -.0017 0001 | 4701 4731
70 | ~+6145 | .0802 | .0623 | -.0057 |-.0010 » 3224 «3549
-80 —-6556 .0722 00730 "‘.0093 e 0017 02907 02&2
1000 - 7324 10553 Il4—95 Bend ] 024-4- -00059 02092 .1908
ln lO - 7664 L] 04.42 \o 1971 e 0301 - 0101 » 1781 s 1508
. 30 . 30 "'-4454 . 1193 -~ 0143 . 0005 . 0001 . 9389 . 6771
-75‘ e 6934 01791 00422 —.0197 -0015 '3896 e 3593
85 | =774 | 1791 | .0726 | -.0288 0014 | 3244 +2959
1.10 "‘07158 01666 .1814 "00589 "'-0025 02132 01722
l. 20 ~e 83 17 . 1578 L 2388 - -0740 ~e 0065 [ 1411 L] 1334
.40 -35 bt 5895 01873 "00326 00019 00001 lo 0839 '9059
[ 60 e 6962 ] 2439 e 0128 e 0085 . 0021 [} 5829 L] 5458
085 "07672 02587 00493 ~a 0351 00049 '3458 03,24-0 .
. 93 e 7883 . 2588 . 0789 - 0469 . 0057 O 2980 . 2737
1.05 "-8186 .2553 . 1333 e 0673 .0054 02416 .2109
1.30 | -.8764 | 2197 | .2881 | -.0926 [-.0074 | .1639 .1122
.60 40 | 27621 | .3008 | ~.0653 .0074 | -.0001 | 1.Q761
045 "'-7654 u3149 -00652 00055 .0005 -9092 -9117
60 | --,7808 | .3460 | =.0532 | -.0042 .0036 [ .599C «5959
«75 ) 8028 | 3628 | -.0240 | -.0227 0072 | 4250 4188
-95 “e 83;8 .3714 00434 e 0595 -0133 r2869 n2734
1.00 | -, 91 .3718 0653 | -.0709 <0147 2623
1 . 15 it} 8783 .3694 . 1440 -a 1108 . 0180 L] 2045 . 1785

(continued on next page)
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Table © (Continued)

2
Al el s@] ] @ @ | | 25
70| -.8844 | .5258 | -.1238 | -.0005 0076 | .3759 «3753
1.10| ~.9166 | .5449 .0236 | -.1129 .0396 | .1916 +1819
1.40) ~-.9721 | .5401 | .2281 |-.2515 0592 | 1242 0959
1.00| .54| -.9729 | .6908 |-.2628 | ,0602 |-.0075 2251 #2292
75| ~.9428 7120 | -.2373 .0246 .0093 2156 2211
1.00f -.9453 | 7247 | ~.1534 [ -.0589 | .0426 | .1612 .1685
1.10] ~.9538 7270 | -.1036 | -.1045 .0586 .1319 <1459
1.20] -.9664 JT277 | 0446 | -.1578 | 0756 .1191 ) 1246
1.35| -.9903 7262 L0611 | —-.2522 .1020 0927 +0949
1.20( 58] -.9925 +8907 | -.4198 .1231 |-.0231 .0816 .0892
| .80| =.9726 | .9049 |-~.3869 <0722 | .0070 .1082 1230
1.05] -.9748 +9131 | -.2937 | -.0397 | .0623 .0869 .1108
1.15] -.9830 | .9152 |~.2405 | -.10GL | .0895 0725 .1000
1.22| -.9899 9157 | ~.1945 | - 1495 .1098 0625 - .0919
1.30|-1.0008 9149 | ~.1411 [ -.2090 | .1346 .0508 .0822
1.40|-1.0171 .9159 | ~.0653 | -.2924 | .1662 .0357 0699

{continued on next page)
Note: Columns 1 - 6h’ i.e. S(O), S(l)a.., %%L were comButed by means of
.gerles as described in method II; column. 7 namely ,%SX was

computed directly from the formuls for the stream function, see refer-
ence 3. B
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Table 9 (Continued)

021 .05| 0329 .0057 | .O032 | -.0007 | -.001% 1,0258 | <, 0188 —.0010| 0000 [ .0000 10146

=207 0003 ~.0198 1 0004 1 0001 0001 0440 1 .0001] —.0201) -.0004 | L0000 | .9iiz

A0 J0476| ~.0773 | L0006 L0002 | .0002 729 | 0484 | -.0775| -.0024 | 0010 | 756

60{ .1005| -.1658 | -,0010 | .0054 | .00OR .6123 | .1025| -.1659| -.0080 { 0051 | .6219

.80 L1503 -.2627 | -.0333| .0156 |-.0000(0L) 4863 | L4874 - 2194 -.0206 | 0163 | .5105

06| .08 | =.0576| -.0015 | .0002 | .00001| .0000(4) 1.0534 |-.0579 | ~.0022{ -.0001 | .0000 ;1.0528

30| ~.0129| -.0443 | .0018| .00003| .00Q2 8775 |-.0125 | -.0446} -,0029. { 0003 | 8777

34| .0006| ~-.0533 | ~.0010 | 0022 [ .0000(5) | .8480 [-.0009|-.0574| -.0037 | .0c004 | .8386

W40 | .0195] -.0719 | -.0034 | .0019 | .0000(R) 7930 | 0172 | -.079L| -.0052 | 0008 | 7798

.50 | 0468 -.1204 | .0050| .0027 |-.0001 6840 | 0482 | ~,1209| -.0087 | 0020 | .6893

J0| L0937 -.2160 | .0080 | .0086 |-.0008 5382 | .1048 | ~.2247) -.0195 | ,0083 | .5487

90 | 1390} ~.3407 | .0020 | .OR36 |-.00L 4319 | JL486 | -.3508 | 0377 | 0233 | 4544

1.10 | 1565 | —.4689 | —.0008 | .0478 |-.0070 <3602 | .1720 | -.5077 | -.0670 | .0521

401 o35 -.3338| .0123 | .0188 | -.0048 | .0006 .6196 |-.2808 | -.0129 ST482

. B0 | -.1228| -.1559 | 0725 | -.0112 | L0001 .5370 |-.1017 | -.1637 23921

85 | ~0100] -.3397 | 1366 | -.Q074 | =.0053 4818 | L0045 | -.3401 ) .2979

93| .0152] ~.4023 | .1582 | -.0023 |-.0086 4627 | L0284 | -.4008 .2823

1.05 | 0476 -.4978 | .1879 ] .0106 |-.0156 4349 | L0573 | —.4950 2637

l|30 -1650 —.7081 .2173 02080 "'00584‘ .3458 -WTO —-7031 ) -2338

101 .15} -,0893 —.0073 | .0010 | -.00002| .0001 1.0554 (- —~.0077 | -.0009 |' .0000 |1.0548

.35 | -.0317| -.0598 | .0054 ! .0005 | .0OOL .8365 |-.0312 | ~,0600 [ -.0063 | .0002 | .8379

.50 .0198| -.1218| .0098| .0023 |-.000L BT76 | L0207 | 1223 [ -.0123 | .0014 | .6829

60| L0519 -.1717 | 0119 | .0G48 |-.0003 .5925 | .0536| —-.1721| -.0181 |. .0039 | .6001

0| .0816) -.2282 | .0145| L0091 |-.0008 .5221 | .08321 -.2282[ -.0252 | 0067 | .5343

1.00| 1488 -.4270| 0147 | .0376 |-.0039 .3808 | 1487 | —.4270| -.0693 | 0341 | 4047

20| .22 -.1753] -.0001| .0035| -.0014 | .0O19 1.0753 |-.1752 | -.0092| -.0035 |-.0001 |1.0744

40| -.0923| ~.0730 | .0141| —.0006 | .0000(4) 7760 |-.090L | —.0734| -.0127 |-.0008 | 7783

J70| J0604{ -.2573| .0326| .0095 | -.0005 A738 1-.0006| -.R677] ~.0384 | 0022 .1.823

80| .0626| —.2984 | .0453| .0127 |{-.0030 4250 | .0629 | -.2986 —.0465 [ .0052 .42 5

1.00| .1123] -.4402 | .0588| .0347 | -.0075 23485 | 1302 ﬁw%'ﬂ%&,.mg .%2
1.10] .1316| -.5165| L0631} .0513 | -.0108 23204 | .1272| 5164 | ~.0740 | .02 .3
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rable 9 (Concluded)

1T POULEW UT DPSQFIOESP

L ‘(0)1. ¢rg:7 ‘Ug-1 sumniop teq0N

f11-/, SumToD

()

Jn8 Uy JI0J WIMMIOJ ©U3 woIy ATI08IEP

umg Tee
(O)m ‘-9-1—

o oJoM ﬁ'"-

)8 ¢

(

ees fFUOT}O

eJol

Aq peyndme

i

‘¢ ag

peqnduod a4
g5 EoTJIed JO SUBSW

o T(p) T(1) T(ﬂ) T(3) T(t_r) ?,_Ti ' T(0) T(1) ,T(?.) T(B) %
130 “‘-2856 ".mlz -Om —-m19 --0108 -%45 ".2344 +.0153 +-(ml "-0025 .954’7
75| —.0165 | -.2681| 0820 | -.00L4| —.0069 | .3566 | °.0049 -.2682 | -.0517 | —.0004]| .4002
'85 +'02(B _""l3396 .].008 +10053 —-m56 l326 -0376 —.Bm —.m .mBO .3614
-95 +Q050'1 "'-W -1183 +-Ou1|- —'.m .2983 -w —‘ml r —.ll% 00125 .3325
1.10 +.0855 ""-5320 ‘1438 +-‘B58 "‘-0]-@ -2716 .0952 “052?3 —.1245 .0162 .2998
1.20 | +.0085 | —.6144| .1600 | +.0566 | ~.0240 | 2577 | L1104 -.6082 | -1539 0211|2823
40| ~.3132 | +.0168] .@R9L | ~.0102]| +.0019 .0564 | -.3198 +,0139
‘45 "'l2639 —-0214 ‘M? --0135 +.CI)22 10717 '-D%36 —-021-1 .%38
60| -.1533 | —.13691 .0943 | +.0224 1 +,0015 | L1147 -.1535 1371 L1131
JI5 | - OTTR | -.2552| 1475 +.0286 | +.0004 | 1459 | -.0786 —-.2556 L1431
-95" —.0‘076 —'IIJ-BD .22]2 +.0270 "’“-0075 01701{- "‘00104 —-43-82 -1632
1.00 | +.0060 |--4597| .R398 [+.0244 ~.0107 Q74T | +,0025 ~ 4628
11-15 +-040‘6 _-5872 -2%5 +-m88 "'-024-0 .184.7 +u0341 —‘058'?2 cl%
50 | —.1986 | -.0163| 0679 | -.0297 +.0070 | ~.2726 | ~.1985 -.0159 —~ 2766
70| 1078 | -.1999| 1704 |-.057L| +.0097 | -.0434 | -.1073 -.1939 ~.0486
90 | -.0446 | ~.3692) 2TTS ~.0767 | +.0058 | +.0581 | —.0449 —.3689 +.0463
1.05 | -.0094 | -.5014| .3587 | -.08L7 -.0041 | +.1016 | ~.0104 —-.5020 0820
1.10 | +.0007 | -.5463| .3864 | ~.08L4 -.0090 | +.113C | =.0008 -.5467 | .0900
1.20 | +.0188 | -.6358| 4408 | —.0757 ~.0216 | +.1322 | +.0157 ~.6362 .1019
111.»0 +0(M-65 ":'0.8133 05505 "-0447 "-05% +-l&3 +-Ol|m —-818‘7 -113'7
1.00| .54 | -.0619 | +.3863 ~.5576 | -.0538 | +.0168 -.2056 | -.1260 | —.0218 _ -.2693
5 | +.0923 | +.3747| ~.710L | -.2071. +.0263 | +.0015 | -.0780 .| -.223 -.0939
1.00 | +.2105 | +.3884| -.9227 | 1568 +,0235 | +.1543 | -.019 -.4525 +.00%
1.10 | +.2556 | +.4009|-1.0174 | ~. 1697 +.0157 | +.2010 | —.0019 —.545L .0333
1.20 | +.2995 | +.4164|-L.1175 ~J1767 | +.0033 | +.2439 | +.0007 -.6376 L0506
1.35 | +.3640 | +.4450 _1.2776 | - 1752 | —.0255 | +.3041 +.0171 -J1782 0678
1.20| .58 +.0785 | +.4983{ -.7305 | -.0903 +.0338 | —.0975 | -.0757 0414 1764
.go +.1662 | +.5113| -.8962 _.1796| +.0566 | +.0375 | ~.0511 ~.2558 --%
1,05 | +.2708 | +.5484|-1.1099 —.o6hs | +.0621 | +.1665 | ~.0R13 - 4945 ;'0104
1.15]| +.3122 +.5696|-1.2038 | 2934 +.0556 | +.2123 | -.0107 -.5896 +.0213
Lol +.3412 | +.5857|-1.2717 | -.3100] +.0475 +.2436 | -.0040 | —.6563 [ e
1.30} +.3733 | +.6061 ~1.3535 | =.3215| +.0335 +.2788 | +.0029 ~.7325 +-01«14
1.40| +.4133 | +.6350| -1.4595 | -.3322 | +.0102 +,3220 | +.0006 | -.8283: .
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Table 10
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NACA TN No. 1018 Table 11 89
Y(A, ©) in the vieinity of the curve Y = O.
(8 operation)
A 9 y A 9 ¥
el -02 '10 -1014 '60 -90 "'0018
.20 . .006 .95 -.003
.30 .038 1.00 009
_ 1.05 020
- .06 «20 -.036
-30 0003 - 080 090 "‘-0-4.0
-40 0038 1005 --004
1.10 007
- .10 «30 ~.043 1.20 .025
40 -.001 1.40 055
45 .017. '
.50 .036 -1.00 1.00 -.026
1.05 -.018
- 20 40 -.088 1.10 -.010
.50 -.038 llls -'-003
.55 -.014 1.20 004
.60 .007
065 » 0026 “1-20 1-10 --014
1!20 —'004
- .30 165 "-024 1030-7 -005
.70 .001 1.40 .013
.75 .018
.80 .032 -1.90 1.3 -.0025
1.4 -.0002
- 40 .70 -.033 1.45 .0010
.80 -.001 1.5 .0020
.85 011
-95 0032

Table 13

The values of ayWy, V3, Ve along the curve ¥ = O.
(8 operation) '

- .02 1.024 1.085 .256
- .06 1.055 . 990 377
- L10. 1.002 845 «400
- .20 .852 .580 431
-~ .30 715 410 .392
-~ 40 .528 .260 .286
~ .50 483 .208 o274
- .60 418 159 .289
- .80 .366 .110 «229
~1.00 « 254, .061 134
“l . 20 . 166 . 031 . 090
~1.90 067 »006 -023
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Table 13
(8 operation)

8 &8 a function of 'v/'a'.0 for one quadrant of the curve ? =0
Vo, M T A o
707 74523 . 66681 -0.12091 LL77
.669. .70111 71305 -0.15905 307

.633 .66000 75127 ~0.19962 .403
557 ‘ 57513 .81806 -~0.30026 .582
o494 .50652 86223 -0.40123 | .698
o440 44877 .89365 -0.50296 .805
«395 40131 . 91594 -0.60065 .885
«355 35956 . .93312 -0.69930 _ 962 -
.288 « 29042 .95690 -0.89731 1.067
«234 +23529 97193 © =1.09784 1.168
.183 .18362 .98300 _ -1.33821 1.245
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a'O
The values of 5 Xy

o

curve. The curve

Table 14

(s operation)

©

71

a _
-';’-‘—’ y elong the curve Y = 0, for ome quadrant cf the

is symmetric with respect to both the x and y axes.

. +8 a
/o, M T A A 22 kx|
_ o o
.10 0.10010 . 99498 -1.93676 .027 002
20 0.20081 .97963 -1.25082 .055 009
40 0.40656 91362 -0.58907 .103 034
<50 0.51299 85839 -0.39083 <123 052
.55 0.56743 82342 | -0.31062 131 .063
.60 0.62284 78235 -0,24069 138 077
65 0.67933 73383 -0.17949 Q46 093 .
.70 0.73704 67585 -0.12761 152 113
725 0.76640 64236 ~0,10237 156 135
‘Table 15
(8 operation)
80 dy , ~20 _dx -
The values of — s = along the curve V¥ = Q0 for one quadrant of the
Pq Qv Po dv . . '
curve.,
~80 gy “8o ax

M v/ 29 T » fo dv P, 4v
.766 725 64284 ~0.10477 it
» 745 0707 . 66707 "O L] 12111 -99 5 . 54
701 669 C 71316 -0.15921 1.29 4.07
660 633 75127 -0.19961 1.48 3.49
«575 557 .81816 -0.30044 1.69 2.56
«507 494 .86195 -0.40029 1.82 2.17
401 .395 .91608 -0.60128 1.95 1.59
<360 «355 «93295 -0,69820 2.19 1.53
.184 .183 .98292 -1.33648 2.75 94
. 089 . 089 .99603 -‘2 . 05277 2 . 80 . 4—5




NACA TN No. 1018 Figs. 1, 2, 3

Figure 1 ) )

Figure 2

Figure 3



NACA TN No. 1018 Figs. 4, 5
S z-plane, 2 = x + 1y
e

2

Figure 4.- Joukowski profile.

V-plane, V = v + ivg

Y

Figure 5.- The hodograph of a flow around the profile in fig. 4.
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Figure 14.,- The image of Y(A,0) = 0 in the physioal plane.

{The contour of the compressibls Tlow ohtainsd
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Figure 16.- The functions T and Tyq.
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Figure 17.- The coefficients -apn; bp.



